CS61B Lecture #31

Today:
- More balanced search structures \((DS(IJ), \text{Chapter 9})\)

Coming Up:
- Pseudo-random Numbers \((DS(IJ), \text{Chapter 11})\)
Really Efficient Use of Keys: the Trie

- Haven’t said much about cost of comparisons.
- For strings, worst case is length of string.
- Therefore should throw extra factor of key length, \(L \), into costs:
 - \(\Theta(M) \) comparisons really means \(\Theta(ML) \) operations.
 - So to look for key \(X \), keep looking at same chars of \(X \) \(M \) times.
- Can we do better? Can we get search cost to be \(O(L) \)?

Idea: Make a *multi-way decision tree*, with one decision per character of key.
The Trie: Example

- Set of keys
 \{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet\}
- Ticked lines show paths followed for “abash” and “fabric”
- Each internal node corresponds to a possible prefix.
- Characters in path to node = that prefix.
Adding Item to a Trie

- Result of adding *bat* and *faceplate*.
- New edges ticked.
A Side-Trip: Scrunching

• For speed, obvious implementation for internal nodes is array indexed by character.

• Gives $O(L)$ performance, L length of search key.

• [Looks as if independent of N, number of keys. Is there a dependence?]

• Problem: arrays are sparsely populated by non-null values—waste of space.

Idea: Put the arrays on top of each other!

• Use null (0, empty) entries of one array to hold non-null elements of another.

• Use extra markers to tell which entries belong to which array.
Scrunching Example

Small example: (unrelated to Tries on preceding slides)

- Three leaf arrays, each indexed 0..9

A1: 0 1 2 3 4 5 6 7 8 9
 bass trout pike

A2: 0 1 2 3 4 5 6 7 8 9
 ghee milk oil

A3: 0 1 2 3 4 5 6 7 8 9
 salt cumin mace

- Now overlay them, but keep track of original index of each item:

A1: 0* 1 2 3 4 5* 6 7* 8 9
A2: 0 1 2* 3 4 5 6* 7* 8 9
A3: 0 1* 2 3 4 5* 6 7 8 9*
A123: 0 -1 1 -1 2 5 5 7 6 7 9

Last modified: Thu Nov 1 19:39:39 2018
Practicum

- The scrunching idea is cute, but
 - Not so good if we want to expand our trie.
 - A bit complicated.
 - Actually more useful for representing large, sparse, fixed tables with many rows and columns.
- Furthermore, number of children in trie tends to drop drastically when one gets a few levels down from the root.
- So in practice, might as well use linked lists to represent set of node’s children...
- ...but use arrays for the first few levels, which are likely to have more children.
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 ![Skip List Example](image)

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 - Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2} \) as many nodes that are \(\geq k \) high as there are that are \(k \) high.

 - Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 - Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.

 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A **skip list** can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 ![Skip List Example](image)

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A **skip list** can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 ![Diagram of skip list with heights and search steps]

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are $> k$ high as there are that are k high.
 - Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 ![Skip List Example](image)

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.
 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

```
∞ 10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞
```

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(k \) high as there are that are \(k \) high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

 ![Skip List Example](image)

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are k high as there are that are k high.
 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are > k high as there are that are k high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

![Diagram of a skip list]

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2} \) as many nodes that are \(> k \) high as there are that are \(k \) high.

- Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

 ![Skip List Diagram]

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(k \) high as there are that are \(\leq k \) high.
 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A **skip list** can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 ![Skip List Diagram]

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 - Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are $> k$ high as there are that are k high.

 - Makes searches fast *with high probability*.

Last modified: Thu Nov 1 19:39:39 2018
Example: Adding and deleting

- Starting from initial list:

- In any order, we add 126 and 127 (choosing random heights for them), and remove 20 and 40:

- Shaded nodes here have been modified.
Summary

• Balance in search trees allows us to realize $\Theta(\lg N)$ performance.

• B-trees, red-black trees:
 - Give $\Theta(\lg N)$ performance for searches, insertions, deletions.
 - B-trees good for external storage. Large nodes minimize # of I/O operations

• Tries:
 - Give $\Theta(B)$ performance for searches, insertions, and deletions, where B is length of key being processed.
 - But hard to manage space efficiently.

• Interesting idea: scrunched arrays share space.

• Skip lists:
 - Give probable $\Theta(\lg N)$ performance for searches, insertions, deletions
 - Easy to implement.
 - Presented for interesting ideas: probabilistic balance, randomized data structures.
Summary of Collection Abstractions

- **Multiset**
 - contains, iterator

- **List**
 - get(n)

- **Set**
 - **Ordered Set**
 - first
 - **Unordered Set**

- **Priority Queue**

- **Map**
 - contains, iterator
 - get

- **Unordered Map**

- **Ordered Map**

Blue: Java has corresponding interface

Green: Java has no corresponding interface

Last modified: Thu Nov 1 19:39:39 2018
Data Structures that Implement Abstractions

Multiset

- **List**: arrays, linked lists, circular buffers
- **Set**
 - **OrderedSet**
 * **Priority Queue**: heaps
 * **Sorted Set**: binary search trees, red-black trees, B-trees, sorted arrays or linked lists
 - **Unordered Set**: hash table

Map

- **Unordered Map**: hash table
- **Ordered Map**: red-black trees, B-trees, sorted arrays or linked lists
Corresponding Classes in Java

Multiset (Collection)

- **List**: ArrayList, LinkedList, Stack, ArrayBlockingQueue, ArrayDeque
- **Set**
 - **OrderedSet**
 - Priority Queue: PriorityQueue
 - Sorted Set (SortedSet): TreeSet
 - Unordered Set: HashSet

Map

- Unordered Map: HashMap
- Ordered Map (SortedMap): TreeMap