Today:

- Selection sorts, heap sort
- Merge sorts
- Quicksort

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- **Gives** $O(N \log N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

```
original:  19  0  -1  7  23  2  42
heapified:  42  23  19  7  0  2  -1
            23  7  19  -1  0  2  42
            19  7  2  -1  0  23  42
            7  0  2  -1  19  23  42
            2  0  -1  7  19  23  42
            0  -1  2  7  19  23  42
            -1  0  2  7  19  23  42
            -1  0  2  7  19  23  42
```

<table>
<thead>
<tr>
<th>Heap part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sorting By Selection: Initial Heapifying

- When covering heaps before, we created them by insertion in an initially empty heap.
- When given an array of unheaped data to start with, there is a faster procedure (assume heap indexed from 0):

```java
void heapify(int[] arr) {
    int N = arr.length;
    for (int k = N / 2; k >= 0; k -= 1) {
        for (int p = k, c = 0; 2*p + 1 < N; p = c) {
            reheapify downward from p;
        }
    }
}
```

- At each iteration of the p loop, only the element at p might be out of order with respect to its descendants, so reheapifying downward will restore the subtree rooted at p to proper heap ordering.
- Looks like the procedure for re-inserting an element after the top element of the heap is removed, repeated $N/2$ times.
- But instead of being $\Theta(N \lg N)$, it's just $\Theta(N)$.
Cost of Creating Heap

- In general, worst-case cost for a heap with $h + 1$ levels is

\[
2^0 \cdot h + 2^1 \cdot (h - 1) + \ldots + 2^{h-1} \cdot 1
= (2^0 + 2^1 + \ldots + 2^{h-1}) + (2^0 + 2^1 + \ldots + 2^{h-2}) + \ldots + (2^0)
= (2^h - 1) + (2^{h-1} - 1) + \ldots + (2^1 - 1)
= 2^{h+1} - 1 - h
\in \Theta(2^h) = \Theta(N)
\]

- Alas, since the rest of heapsort still takes $\Theta(N \lg N)$, this does not improve its asymptotic cost.
Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- **Already seen analysis:** $\Theta(N \lg N)$.
- **Good for** *external sorting*:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
- **Can merge** K sequences of *arbitrary size* on secondary storage using $\Theta(K)$ storage:

  ```java
  Data[] V = new Data[K];
  For all i, set V[i] to the first data item of sequence i;
  while there is data left to sort:
      Find k so that V[k] is smallest;
      Output V[k], and read new value into V[k] (if present).
  ```
Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate:

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

0 elements processed

1 element processed

2 elements processed

3 elements processed

4 elements processed

6 elements processed

11 elements processed
QuickSort: Speed through Probability

Idea:

- **Partition** data into pieces: everything > a **pivot** value at the high end of the sequence to be sorted, and everything ≤ on the low end.

- Repeat recursively on the high and low pieces.

- For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.

- Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, #inversions is, too.

- Have to choose pivot well. E.g.: **median** of first, last and middle items of sequence.
Example of Quicksort

- In this example, we continue until pieces are size \(\leq 4 \).
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

```
16  10  13  18  -4  -7  12  -5  19  15  0  22  29  34  -1*
```

```
-4  -5  -7  -1  18  13  12  10  19  15  0  22  29  34  16*
```

```
-4  -5  -7  -1  15  13  12*  10  0  16  19*  22  29  34  18
```

```
-4  -5  -7  -1  10  0  12  15  13  16  18  19  29  34  22
```

- Now everything is “close to” right, so just do insertion sort:

```
-7  -5  -4  -1  0  10  12  13  15  16  18  19  22  29  34
```
Performance of Quicksort

• Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.

• Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!
Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

- Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If $m = k$, you’re done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{th}$ from right half of sequence.
Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

<table>
<thead>
<tr>
<th>51</th>
<th>60</th>
<th>21</th>
<th>-4</th>
<th>37</th>
<th>4</th>
<th>49</th>
<th>10</th>
<th>40*</th>
<th>59</th>
<th>0</th>
<th>13</th>
<th>2</th>
<th>39</th>
<th>11</th>
<th>46</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Looking for #10 to left of pivot 40:

<table>
<thead>
<tr>
<th>13</th>
<th>31</th>
<th>21</th>
<th>-4</th>
<th>37</th>
<th>4*</th>
<th>11</th>
<th>10</th>
<th>39</th>
<th>2</th>
<th>0</th>
<th>40</th>
<th>59</th>
<th>51</th>
<th>49</th>
<th>46</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Looking for #6 to right of pivot 4:

| -4 | 0 | 2 | 4 | 37 | 13 | 11 | 10 | 39 | 21 | 31* | 40 | 59 | 51 | 49 | 46 | 60 |
|----|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 4 | | | | | | | | | | | | | | | | |

Looking for #1 to right of pivot 31:

| -4 | 0 | 2 | 4 | 21 | 13 | 11 | 10 | 31 | 39 | 37 | 40 | 59 | 51 | 49 | 46 | 60 |
|----|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 9 | | | | | | | | | | | | | | | | |

Just two elements: just sort and return #1:

| -4 | 0 | 2 | 4 | 21 | 13 | 11 | 10 | 31 | 37 | 39 | 40 | 59 | 51 | 49 | 46 | 60 |
|----|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 9 | | | | | | | | | | | | | | | | |

Result: 39
Selection Performance

• For this algorithm, if \(m \) roughly in middle each time, cost is

\[
C(N) = \begin{cases}
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise.}
\end{cases}
\]

\[
= N + N/2 + \ldots + 1 \\
= 2N - 1 \in \Theta(N)
\]

• But in worst case, get \(\Theta(N^2) \), as for quicksort.

• By another, non-obvious algorithm, can get \(\Theta(N) \) worst-case time for all \(k \) (take CS170).