CS61B Lectures #27

Today:
• Selection sorts, heap sort
• Merge sorts
• Quicksort

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- **Gives** $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

```
original: 19 0 -1 7 23 2 42
heapified: 42 23 19 7 0 2 -1
```

```
original: 19 0 -1 7 23 2 42
heapified: 42 23 19 7 0 2 -1
```

- **Heap part**
- **Sorted part**
Sorting By Selection: Initial Heapifying

• When covering heaps before, we created them by insertion in an initially empty heap.

• When given an array of unheaped data to start with, there is a faster procedure (assume heap indexed from 0):

```java
void heapify(int[] arr) {
    int N = arr.length;
    for (int k = N / 2; k >= 0; k -= 1) {
        for (int p = k, c = 0; 2*p + 1 < N; p = c) {
            c = 2k+1 or 2k+2, whichever is < N
            and indexes larger value in arr;
            swap elements c and k of arr;
        }
    }
}
```

• Looks like the procedure for re-inserting an element after the top element of the heap is removed, repeated \(\frac{N}{2} \) times.

• But instead of being \(\Theta(N \log N) \), it’s just \(\Theta(N) \).
Cost of Creating Heap

- In general, worst-case cost for a heap with $h + 1$ levels is

$$2^0 \cdot h + 2^1 \cdot (h - 1) + \ldots + 2^{h-1} \cdot 1$$

$$= (2^0 + 2^1 + \ldots + 2^{h-1}) + (2^0 + 2^1 + \ldots + 2^{h-2}) + \ldots + (2^0)$$

$$= (2^h - 1) + (2^{h-1} - 1) + \ldots + (2^1 - 1)$$

$$= 2^{h+1} - 1 - h$$

$$\in \Theta(2^h) = \Theta(N)$$

- Alas, since the rest of heapsort still takes $\Theta(N \lg N)$, this does not improve its asymptotic cost.
Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
- Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage:

  ```java
  Data[] V = new Data[K];
  For all i, set V[i] to the first data item of sequence i;
  while there is data left to sort:
    Find k so that V[k] is smallest;
    Output V[k], and read new value into V[k] (if present).
  ```
Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate:

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

0 elements processed

1 element processed

2 elements processed

3 elements processed

4 elements processed

6 elements processed

11 elements processed
QuickSort: Speed through Probability

Idea:

- **Partition** data into pieces: everything $> a$ pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.

- Repeat recursively on the high and low pieces.

- For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.

- Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, \#inversions is, too.

- Have to choose pivot well. E.g.: *median* of first, last and middle items of sequence.
Example of Quicksort

• In this example, we continue until pieces are size \(\leq 4 \).

• Pivots for next step are starred. Arrange to move pivot to dividing line each time.

• Last step is insertion sort.

\[
\begin{array}{cccccccccccccccc}
16 & 10 & 13 & 18 & -4 & -7 & 12 & -5 & 19 & 15 & 0 & 22 & 29 & 34 & -1^*\\
-4 & -5 & -7 & -1 & 18 & 13 & 12 & 10 & 19 & 15 & 0 & 22 & 29 & 34 & 16^*\\
-4 & -5 & -7 & -1 & 15 & 13 & 12^* & 10 & 0 & 16 & 19^* & 22 & 29 & 34 & 18\\
-4 & -5 & -7 & -1 & 10 & 0 & 12 & 15 & 13 & 16 & 18 & 19 & 29 & 34 & 22\\
\end{array}
\]

• Now everything is “close to” right, so just do insertion sort:

\[
\begin{array}{cccccccccccccccc}
-7 & -5 & -4 & -1 & 0 & 10 & 12 & 13 & 15 & 16 & 18 & 19 & 22 & 29 & 34\\
\end{array}
\]
Performance of Quicksort

• Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.

• Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time *very* unlikely!
Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

- Obvious method: sort, select element $#k$, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If $m = k$, you’re done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{\text{th}}$ from right half of sequence.
Selection Example

Problem: Find just item #10 in the sorted version of array:

<table>
<thead>
<tr>
<th>Initial contents:</th>
<th>51</th>
<th>60</th>
<th>21</th>
<th>-4</th>
<th>37</th>
<th>4</th>
<th>49</th>
<th>10</th>
<th>40</th>
<th>0</th>
<th>13</th>
<th>2</th>
<th>39</th>
<th>11</th>
<th>46</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
</table>

Looking for #10 to left of pivot 40:

| 13 | 31 | 21 | -4 | 37 | 4* | 11 | 10 | 39 | 2 | 0 | 40 | 59 | 51 | 49 | 46 | 60 | 0 |

Looking for #6 to right of pivot 4:

| -4 | 0 | 2 | 4 | 37 | 13 | 11 | 10 | 39 | 21 | 31* | 40 | 59 | 51 | 49 | 46 | 60 | 4 |

Looking for #1 to right of pivot 31:

| -4 | 0 | 2 | 4 | 21 | 13 | 11 | 10 | 31 | 39 | 37 | 40 | 59 | 51 | 49 | 46 | 60 | 9 |

Just two elements; just sort and return #1:

| -4 | 0 | 2 | 4 | 21 | 13 | 11 | 10 | 31 | 37 | 39 | 40 | 59 | 51 | 49 | 46 | 60 | 9 |

Result: 39
Selection Performance

• For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise.} \end{cases}$$

$$= N + N/2 + \ldots + 1$$

$$= 2N - 1 \in \Theta(N)$$

• But in worst case, get $\Theta(N^2)$, as for quicksort.

• By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).