CS61B Lecture #20: Trees
A Recursive Structure

- Trees naturally represent recursively defined, hierarchical objects with more than one recursive subpart for each instance.

- Common examples: expressions, sentences.
 - Expressions have definitions such as “an expression consists of a literal or two expressions separated by an operator.”

- Also describe structures in which we recursively divide a set into multiple subsets.
Formal Definitions

- Trees come in a variety of flavors, all defined recursively:
 - **61A style:** A tree consists of a *label* value and zero or more *branches* (or *children*), each of them a tree.
 - **61A style, alternative definition:** A tree is a set of *nodes* (or *vertices*), each of which has a label value and one or more *child nodes*, such that no node descends (directly or indirectly) from itself. A node is the *parent* of its children.
 - **Positional trees:** A tree is either *empty* or consists of a node containing a label value and an indexed sequence of zero or more children, each a positional tree. If every node has two positions, we have a *binary tree* and the children are its *left and right sub-trees*. Again, nodes are the parents of their non-empty children.
 - We’ll see other varieties when considering graphs.
Tree Characteristics (I)

- The *root* of a tree is a non-empty node with no parent in that tree (its parent might be in some larger tree that contains that tree as a subtree). Thus, every node is the root of a (sub)tree.

- The *order*, *arity*, or *degree* of a node (tree) is its number (maximum number) of children.

- The nodes of a *k-ary tree* each have at most k children.

- A *leaf* node has no children (no non-empty children in the case of positional trees).
Tree Characteristics (II)

- The **height** of a node in a tree is the smallest distance to a leaf. That is, a leaf has height 0 and a non-empty tree's height is one more than the maximum height of its children. The height of a tree is the height of its root.

- The **depth** of a node in a tree is the distance to the root of that tree. That is, in a tree whose root is R, R itself has depth 0 in R, and if node $S \neq R$ is in the tree with root R, then its depth is one greater than its parent's.
A Tree Type, 61A Style

public class Tree<Label> {

 // This constructor is convenient, but unfortunately causes
 // (harmless) warnings that we will explain later.

 public Tree(Label label, Tree<Label>... children) {
 _label = label;
 _kids = new ArrayList<>(Arrays.asList(children));
 }

 public int arity() { return _kids.size(); }

 public Label label() { return _label; }

 public Tree<Label> child(int k) { return _kids.get(k); }

 private Label _label;
 private ArrayList<Tree<Label>> _kids;

}
Fundamental Operation: Traversal

- **Traversing a tree** means enumerating (some subset of) its nodes.
- Typically done recursively, because that is natural description.
- As nodes are enumerated, we say they are **visited**.
- Three basic orders for enumeration (+ variations):
 - **Preorder**: visit node, traverse its children.
 - **Postorder**: traverse children, visit node.
 - **Inorder**: traverse first child, visit node, traverse second child (binary trees only).

```
Postorder

6
3 5
0 2 4
1

Preorder

0
1 5
2 3 6
4

inorder

4
1 5
0 3 6
2
```
Preorder Traversal and Prefix Expressions

Problem: Convert

```
*  
+  
  x  
  + 
    y 3
```

into

```
(- (- (* x (+ y 3))) z)
```

(Assume Tree<Label> is means “Tree whose labels have type Label.”)

```java
static String toLisp(Tree<String> T) {
    if (T.arity() == 0) return T.label();
    else {
        String R;  R = "(" + T.label();
        for (int i = 0; i < T.arity(); i += 1)
            R += " " + toLisp(T.child(i));
        return R + ")";
    }
}
```
Inorder Traversal and Infix Expressions

Problem: Convert

\[-(x*(y+3))-z\]

into

\[((-(x*(y+3)))-z)\]

To think about: how to get rid of all those parentheses.

static String toInfix(Tree<String> T) {
 if (T.arity() == 0) {
 return T.label();
 } else if (T.arity() == 1) {
 return "(" + toInfix(T.child(0)) + ")";
 } else {
 return "(" + toInfix(T.child(0)) + T.label() + toInfix(T.child(1)) + ")";
 }
}
Postorder Traversal and Postfix Expressions

Problem: Convert

\[
\begin{array}{c}
- \\
- & z \\
* & \\
+ \\
\end{array}
\Rightarrow x \ y \ 3 \ +:2 \ *:2 \ -:1 \ z \ -:2
\]

static String toPolish(Tree<String> T) {
 String R; R = "";
 for (int i = 0; i < T.arity(); i += 1)
 R += toPolish(T.child(i)) + " ";
 return R + String.format("%s:%d", T.label(), T.arity());
}
void preorderTraverse(Tree<Label> T, Consumer<Tree<Label>> visit) {
 if (T != null) {
 visit.accept(T);
 for (int i = 0; i < T.arity(); i += 1)
 preorderTraverse(T.child(i), visit);
 }
}

• java.util.function.Consumer<AType> is a library interface that works as a function-like type with one void method, accept, which takes an argument of type AType.

• Now, using Java 8 lambda syntax, I can print all labels in the tree in preorder with:

 preorderTraverse(myTree, T -> System.out.print(T.label() + " "));
Iterative Depth-First Traversals

- Tree recursion conceals data: a *stack* of nodes (all the \(T \) arguments) and a little extra information. Can make the data explicit:

```java
void preorderTraverse2(Tree<Label> T, Consumer<Tree<Label>> visit) {
    Stack<Tree<Label>> work = new Stack<>();
    work.push(T);
    while (!work.isEmpty()) {
        Tree<Label> node = work.pop();
        visit.accept(node);
        for (int i = node.arity()-1; i >= 0; i -= 1)
            work.push(node.child(i));  // Why backward?
    }
}
```

- This traversal takes the same \(\Theta(\cdot) \) time as doing it recursively, and also the same \(\Theta(\cdot) \) space.

- That is, we have substituted an explicit stack data structure (*work*) for Java’s built-in execution stack (which handles function calls).
Level-Order (Breadth-First) Traversal

Problem: Traverse all nodes at depth 0, then depth 1, etc:

```
0
/   \\   
1     2
|     /   \   
3   4     5  
|       /   \  
6
```

Last modified: Mon Oct 8 21:21:22 2018
Breadth-First Traversal Implemented

A simple modification to iterative depth-first traversal gives breadth-first traversal. Just change the (LIFO) stack to a (FIFO) queue:

```java
void breadthFirstTraverse(Tree<Label> T, Consumer<Tree<Label>> visit) {
    ArrayDeque<Tree<Label>> work = new ArrayDeque<>(); // (Changed)
    work.push(T);
    while (!work.isEmpty()) {
        Tree<Label> node = work.remove();  // (Changed)
        if (node != null) {
            visit.accept(node);
            for (int i = 0; i < node.arity(); i += 1) // (Changed)
                work.push(node.child(i));
        }
    }
}
```
The traversal algorithms have roughly the form of the \textit{boom} example in §1.3.3 of \textit{Data Structures}—an exponential algorithm.

However, the role of M in that algorithm is played by the \textit{height} of the tree, not the number of nodes.

In fact, easy to see that tree traversal is \textit{linear}: $\Theta(N)$, where N is the \# of nodes: Form of the algorithm implies that there is one visit at the root, and then one visit for every \textit{edge} in the tree. Since every node but the root has exactly one parent, and the root has none, \textbf{must be} $N - 1$ edges in any non-empty tree.

In positional tree, is also one recursive call for each empty tree, but \# of empty trees can be no greater than kN, where k is arity.

For \textit{k}-ary tree (max \# children is k), $h + 1 \leq N \leq \frac{k^{h+1} - 1}{k - 1}$, where h is height.

So $h \in \Omega(\log_k N) = \Omega(\lg N)$ and $h \in O(N)$.

Many tree algorithms look at one child only. For them, worst-case time is proportional to the \textit{height} of the tree—$\Theta(\lg N)$—assuming that tree is \textit{bushy}—each level has about as many nodes as possible.
Recursive Breadth-First Traversal: Iterative Deepening

- Previous breadth-first traversal used space proportional to the width of the tree, which is $\Theta(N)$ for bushy trees, whereas depth-first traversal takes $\lg N$ space on bushy trees.

- Can we get breadth-first traversal in $\lg N$ space and $\Theta(N)$ time on bushy trees?

- For each level, k, of the tree from 0 to lev, call doLevel(T, k):

  ```java
  void doLevel(Tree T, int lev) {
    if (lev == 0)
      visit T
    else
      for each non-null child, C, of T {
        doLevel(C, lev-1);
      }
  }
  ```

- So we do breadth-first traversal by repeated (truncated) depth-first traversals: iterative deepening.

- In doLevel(T, k), we skip (i.e., traverse but don’t visit) the nodes before level k, and then visit at level k, but not their children.
Iterative Deepening Time?

- Let h be height, N be # of nodes.
- Count # edges traversed (i.e, # of calls, not counting null nodes).
- First (full) tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 for level 3.
- Or in general $\sum_{i=0}^{h} (2^i - 1) = 2^{h+2} - h \in \Theta(N)$, since $N = 2^{h+1} - 1$ for this tree.
- Second (right leaning) tree: 1 for level 0, 2 for level 2, 3 for level 3.
- Or in general $\frac{(h+1)(h+2)}{2} = \frac{N(N+1)}{2} \in \Theta(N^2)$, since $N = h + 1$ for this kind of tree.
Iterators for Trees

• Frankly, iterators are not terribly convenient on trees.
• But can use ideas from iterative methods.

```java
class PreorderTreeIterator<Label> implements Iterator<Label> {
    private Stack<Tree<Label>> s = new Stack<Tree<Label>>();

    public PreorderTreeIterator(Tree<Label> T) { s.push(T); }

    public boolean hasNext() { return !s.isEmpty(); }
    public T next() {
        Tree<Label> result = s.pop();
        for (int i = result.arity()-1; i >= 0; i -= 1)
            s.push(result.child(i));
        return result.label();
    }
}
```

Example: (what do I have to add to class Tree first?)

```java
for (String label : aTree) System.out.print(label + " ");
```
Tree Representation

(a) Embedded child pointers (+ optional parent pointers)

(b) Array of child pointers (+ optional parent pointers)

(c) child/sibling pointers

(d) breadth-first array (complete trees)