Topics

• Overview of standard Java Collections classes.
 - Iterators, ListIterators
 - Containers and maps in the abstract

• Amortized analysis of implementing lists with arrays.
Data Types in the Abstract

- Most of the time, should not worry about implementation of data structures, search, etc.

- What they do for us—their specification—is important.

- Java has several standard types (in java.util) to represent collections of objects
 - Six interfaces:
 * Collection: General collections of items.
 * List: Indexed sequences with duplication
 * Set, SortedSet: Collections without duplication
 * Map, SortedMap: Dictionaries (key \mapsto value)
 - Concrete classes that provide actual instances: LinkedList, ArrayList, HashSet, TreeSet.
 - To make change easier, purists would use the concrete types only for new, interfaces for parameter types, local variables.
Collection Structures in java.util

Collection

List
- LinkedList
- ArrayList
- Vector

Set
- HashSet
- TreeSet

SortedSet

Map

SortedMap
- HashMap
- WeakHashMap
- TreeMap

Key:
- interface
- class

extends
implements
The Collection Interface

- Collection interface. Main functions promised:
 - Membership tests: \(\text{contains} (\in), \text{containsAll} (\subseteq) \)
 - Other queries: size, isEmpty
 - Retrieval: iterator, toArray
 - Optional modifiers: add, addAll, clear, remove, removeAll (set difference), retainAll (intersect)
Side Trip about Library Design: Optional Operations

- Not all Collections need to be modifiable; often makes sense just to get things from them.
- So some operations are optional (add, addAll, clear, remove, removeAll, retainAll)
- The library developers decided to have all Collections implement these, but allowed implementations to throw an exception:

 `UnsupportedOperationException`

- An alternative design would have created separate interfaces:

  ```java
  interface Collection { contains, containsAll, size, iterator, ... }
  interface Expandable extends Collection { add, addAll }
  interface Shrinkable extends Collection { remove, removeAll, ... }
  interface ModifiableCollection extends Collection, Expandable, Shrinkable {
  }
  ```

- You'd soon have lots of interfaces. Perhaps that's why they didn't do it that way.
The List Interface

- Extends Collection
- Intended to represent *indexed sequences* (generalized arrays)
- Adds new methods to those of Collection:
 - **Membership tests**: `indexOf`, `lastIndexOf`.
 - **Retrieval**: `get(i)`, `listIterator()`, `subList(B, E)`.
 - **Modifiers**: `add` and `addAll` with additional index to say *where* to add. Likewise for removal operations. `set` operation to go with `get`.
- **Type** `ListIterator<Item>` extends `Iterator<Item>`:
 - **Adds** `previous` and `hasPrevious`.
 - `add`, `remove`, and `set` allow one to iterate through a list, inserting, removing, or changing as you go.
- **Important Question**: What advantage is there to saying `List L` rather than `LinkedList L` or `ArrayList L`?
Implementing Lists (I): ArrayLists

- The main concrete types in Java library for interface List are ArrayList and LinkedList:

- As you might expect, an ArrayList, A, uses an array to hold data. For example, a list containing the three items 1, 4, and 9 might be represented like this:

 ![Diagram of ArrayList](image)

 - After adding four more items to A, its data array will be full, and the value of data will have to be replaced with a pointer to a new, bigger array that starts with a copy of its previous values.

- Question: For best performance, how big should this new array be?

- If we increase the size by 1 each time it gets full (or by any constant value), the cost of \(N \) additions will scale as \(\Theta(N^2) \), which makes ArrayList look much worse than LinkedList (which uses an IntList-like implementation.)
Amortization: Expanding Vectors

- When using array for expanding sequence, best to *double* the size of array to grow it. Here’s why.
- If array is size s, doubling its size and moving s elements to the new array takes time proportional to $2s$.
- In all cases, there is an additional $\Theta(1)$ cost for each addition to account for actually assigning the new value into the array.
- When you add up these costs for inserting a sequence of N items, the *total* cost turns out to proportional to N, as if each addition took constant time, even though some of the additions actually take time proportional to N all by themselves!
Amortization: Expanding Vectors (II)

<table>
<thead>
<tr>
<th>Item #</th>
<th>Resizing Cost</th>
<th>Cumulative Cost</th>
<th>Resizing Cost per Item</th>
<th>Array Size After Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>14</td>
<td>2.8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>14</td>
<td>2.33</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>30</td>
<td>3.33</td>
<td>16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>30</td>
<td>1.88</td>
<td>16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

For $2^m + 1$ to $2^{m+1} - 1$,

<table>
<thead>
<tr>
<th>Item #</th>
<th>Resizing Cost</th>
<th>Cumulative Cost</th>
<th>Resizing Cost per Item</th>
<th>Array Size After Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^m + 1$</td>
<td>0</td>
<td>$2^{m+2} - 2$</td>
<td>≈ 2</td>
<td>2^{m+1}</td>
</tr>
<tr>
<td>2^{m+1}</td>
<td>2^{m+2}</td>
<td>$2^{m+3} - 2$</td>
<td>≈ 4</td>
<td>2^{m+2}</td>
</tr>
</tbody>
</table>

- If we spread out (*amortize*) the cost of resizing, we average at most about 4 time units on each item: “amortized insertion time is 4 units.” Time to add N elements is $\Theta(N)$, *not* $\Theta(N^2)$.
Demonstrating Amortized Time: Potential Method

- To formalize the argument, associate a potential, \(\Phi_i \geq 0 \), to the \(i \)th operation that keeps track of “saved up” time from cheap operations that we can “spend” on later expensive ones. Start with \(\Phi_0 = 0 \).

- Now we pretend that the cost of the \(i \)th operation is actually \(a_i \), the amortized cost, defined

\[
a_i = c_i + \Phi_{i+1} - \Phi_i,
\]

where \(c_i \) is the real cost of the operation. Or, looking at potential:

\[
\Phi_{i+1} = \Phi_i + (a_i - c_i)
\]

- On cheap operations, we artificially set \(a_i > c_i \) so that we can increase \(\Phi \) (\(\Phi_{i+1} > \Phi_i \)).

- On expensive ones, we typically have \(a_i \ll c_i \) and greatly decrease \(\Phi \) (but don’t let it go negative—may not be “overdrawn”).

- We try to do all this so that \(a_i \) remains as we desired (e.g., \(O(1) \) for expanding array), without allowing \(\Phi_i < 0 \).

- Requires that we choose \(a_i \) so that \(\Phi_i \) always stays ahead of \(c_i \).
Application to Expanding Arrays

- When adding to our array, the cost, \(c_i \), of adding element \(\#i \) when the array already has space for it is 1 unit.

- The array does not initially have space when adding items 1, 2, 4, 8, 16,...—in other words at item \(2^n \) for all \(n \geq 0 \). So,
 - \(c_i = 1 \) if \(i \geq 0 \) and is not a power of 2; and
 - \(c_i = 2i + 1 \) when \(i \) is a power of 2 (copy \(i \) items, clear another \(i \) items, and then add item \(\#i \)).

- So on each operation \(\#2^n \) we’re going to need to have saved up at least \(2 \cdot 2^n = 2^{n+1} \) units of potential to cover the expense of expanding the array, and we have this operation and the preceding \(2^{n-1} - 1 \) operations in which to save up this much potential (everything since the preceding doubling operation).

- So choose \(a_0 = 1 \) and \(a_i = 5 \) for \(i > 0 \). Apply \(\Phi_{i+1} = \Phi_i + (a_i - c_i) \), and here is what happens:

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_i)</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>33</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(a_i)</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(\Phi_i)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Pretending each cost is 5 never underestimates true cumulative time.