1 Basic Algorithmic Analysis

For each of the following function pairs f and g, list out the \(\Theta, \Omega, O \) relationships between f and g, if any such relationship exists. For example, $f(x) \in O(g(x))$.

1. $f(x) = x^2$, $g(x) = x^2 + x$
2. $f(x) = 5000000x^3$, $g(x) = x^5$
3. $f(x) = \log(x)$, $g(x) = 5x$
4. $f(x) = e^x$, $g(x) = x^5$
5. $f(x) = \log(5x)$, $g(x) = x$

2 Practice with Runtime

For each of the following functions, find the Big-Theta expression for the runtime of the function in terms of the input variable n.

1. For this problem, assume that the static method constant runs in $\Theta(1)$ time.

```java
public static void bars(int n) {
    for (int i = 0; i < n; i += 1) {
        for (int j = 0; j < i; j += 1) {
            System.out.println(i + j);
        }
    }
    for (int k = 0; k < n; k += 1) {
        constant(k);
    }
}
```

2. ```java
 public static void barsRearranged(int n) {
 for (int i = 1; i <= n; i *= 2) {
 for (int j = 0; j < i; j += 1) {
 System.out.println("mooove");
 }
 }
 }
   ```
3 A Bit with some Bits

Complete the following method. When given a list of integers, $\text{bitVote}$ returns an integer such that the $i^{th}$ bit of the return value is 1 if and only if more than half of the integers in the list have 1 in the $i^{th}$ bit. Keep in mind that Java ints are 32 bits long!

For example, if $\text{bitList}$ was $[1,3]$, then in binary this would be $[(01)_2,(11)_2]$ (with 30 more zeros in front of each number), and the result would be $(01)_2 \implies 1$, since the right-most digit was 1 for more than half the numbers, but the second-from-the-right digit was not 1 for more than half the numbers.

Note: the solution to this question isn’t very complicated, but it’s not short! Try breaking it down into components, and ask your neighbors for help!

```java
public static int bitVote(int[] bitList) {

 for (int i = 0; i < 32; i++) { // For each bit index

 for (int k : bitList) { // For each integer

 }

 }

}
```