CS61B Lecture #32

Today:

- Pseudo-random Numbers (Chapter 11)
- What use are random sequences?
- What are “random sequences”?
- Pseudo-random sequences.
- How to get one.
- Relevant Java library classes and methods.
- Random permutations.
Why Random Sequences?

- Choose statistical samples
- Simulations
- Random algorithms
- Cryptography:
 - Choosing random keys
 - Generating streams of random bits (e.g., SSL xor's your data with a regeneratable, pseudo-random bit stream that only you and the recipient can generate).
- And, of course, games
What Is a “Random Sequence”?

• How about: “a sequence where all numbers occur with equal frequency”?
 - Like 1, 2, 3, 4, …?

• Well then, how about: “an unpredictable sequence where all numbers occur with equal frequency?”
 - Like 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1,…?

• Besides, what is wrong with 0, 0, 0, 0, … anyway? Can’t that occur by random selection?
Pseudo-Random Sequences

- Even if definable, a “truly” random sequence is difficult for a computer (or human) to produce.
- For most purposes, need only a sequence that satisfies certain statistical properties, even if deterministic.
- Sometimes (e.g., cryptography) need sequence that is hard or impractical to predict.
- Pseudo-random sequence: deterministic sequence that passes some given set of statistical tests.
- For example, look at lengths of runs: increasing or decreasing contiguous subsequences.
- Unfortunately, statistical criteria to be used are quite involved. For details, see Knuth.
Generating Pseudo-Random Sequences

- Not as easy as you might think.
- Seemingly complex jumbling methods can give rise to bad sequences.
- Linear congruential method is a simple method used by Java:
 \[
 \begin{align*}
 X_0 & = \text{arbitrary seed} \\
 X_i & = (aX_{i-1} + c) \mod m, \quad i > 0
 \end{align*}
 \]
- Usually, \(m \) is large power of 2.
- For best results, want \(a \equiv 5 \mod 8 \), and \(a, c, m \) with no common factors.
- This gives generator with a period of \(m \) (length of sequence before repetition), and reasonable potency (measures certain dependencies among adjacent \(X_i \).)
- Also want bits of \(a \) to “have no obvious pattern” and pass certain other tests (see Knuth).
- Java uses \(a = 25214903917, \ c = 11, \ m = 2^{48} \), to compute 48-bit pseudo-random numbers. It’s good enough for many purposes, but not cryptographically secure.
What Can Go Wrong (I)?

• Short periods, many impossible values: E.g., a, c, m even.

• Obvious patterns. E.g., just using lower 3 bits of X_i in Java’s 48-bit generator, to get integers in range 0 to 7. By properties of modular arithmetic,

$$X_i \mod 8 = (25214903917X_{i-1} + 11 \mod 2^{48}) \mod 8$$
$$= (5(X_{i-1} \mod 8) + 3) \mod 8$$

so we have a period of 8 on this generator; sequences like

$$0, 1, 3, 7, 1, 2, 7, 1, 4, \ldots$$

are impossible. This is why Java doesn’t give you the raw 48 bits.
What Can Go Wrong (II)?

Bad potency leads to bad correlations.

- The infamous IBM generator RANDU: $c = 0$, $a = 65539$, $m = 2^{31}$.

- When RANDU is used to make 3D points: $(X_i/S, X_{i+1}/S, X_{i+2}/S)$, where S scales to a unit cube, ...

- ... points will be arranged in parallel planes with voids between. So “random points” won’t ever get near many points in the cube:

![3D Points Diagram](https://commons.wikimedia.org/w/index.php?curid=3832343)

Additive Generators

- **Additive generator:**

\[
X_n = \begin{cases}
 \text{arbitrary value}, & n < 55 \\
 (X_{n-24} + X_{n-55}) \mod 2^e, & n \geq 55
\end{cases}
\]

- Other choices than 24 and 55 possible.
- This one has period of \(2^f(2^{55} - 1)\), for some \(f < e\).
- Simple implementation with circular buffer:

```c
i = (i+1) % 55;
X[i] += X[(i+31) % 55];    // Why +31 (55-24) instead of -24?
return X[i];           /* modulo 2^{32} */
```

- where \(X[0 \ldots 54]\) is initialized to some “random” initial seed values.
Cryptographic Pseudo-Random Number Generators

- The simple form of linear congruential generators means that one can predict future values after seeing relatively few outputs.
- Not good if you want unpredictable output (think on-line games involving money or randomly generated keys for encrypting your web traffic.)
- A cryptographic pseudo-random number generator (CPRNG) has the properties that
 - Given k bits of a sequence, no polynomial-time algorithm can guess the next bit with better than 50% accuracy.
 - Given the current state of the generator, it is also infeasible to reconstruct the bits it generated in getting to that state.
Cryptographic Pseudo-Random Number Generator

Example

- Start with a good block cipher—an encryption algorithm that encrypts blocks of N bits (not just one byte at a time as for Enigma). AES is an example.
- As a seed, provide a key, K, and an initialization value I.
- The j^{th} pseudo-random number is now $E(K, I + j)$, where $E(x, y)$ is the encryption of message y using key x.
Adjusting Range and Distribution

• Given raw sequence of numbers, \(X_i \), from above methods in range (e.g.) 0 to \(2^{48} \), how to get uniform random integers in range 0 to \(n - 1 \)?

• If \(n = 2^k \), is easy: use top \(k \) bits of next \(X_i \) (bottom \(k \) bits not as "random")

• For other \(n \), be careful of slight biases at the ends. For example, if we compute \(X_i / (2^{48}/n) \) using all integer division, and if \((2^{48}/n) \) gets rounded down, then you can get \(n \) as a result (which you don’t want).

• If you try to fix that by computing \((2^{48}/(n - 1)) \) instead, the probability of getting \(n - 1 \) will be wrong.
Adjusting Range (II)

- To fix the bias problems when n does not evenly divide 2^{48}, Java throws out values after the largest multiple of n that is less than 2^{48}:

  ```java
  /** Random integer in the range 0 .. n-1, n>0. */
  int nextInt(int n) {
      long X = next random long (0 ≤ X < 2^{48});
      if (n is 2^k for some k)
          return top k bits of X;

      int MAX = largest multiple of n that is < 2^{48};
      while (X_i >= MAX)
          X = next random long (0 ≤ X < 2^{48});
      return X_i / (MAX/n);
  }
  ```
Arbitrary Bounds

• How to get arbitrary range of integers (L to U)?

• To get random float, x in range $0 \leq x < d$, compute

\[
\text{return } \frac{d \times \text{nextInt}((1<<24)}{(1<<24)};
\]

• Random double a bit more complicated: need two integers to get enough bits.

\[
\text{long bigRand} = ((\text{long}) \text{nextInt}((1<<26) << 27) + (\text{long}) \text{nextInt}((1<<27));
\]

\[
\text{return } d \times \text{bigRand} / (1L << 53);
\]
Generalizing: Other Distributions

- Suppose we have some desired probability distribution function, and want to get random numbers that are distributed according to that distribution. How can we do this?

- Example: the normal distribution:

\[P(Y \leq X) \]

- Curve is the desired probability distribution \(P(Y \leq X) \) is the probability that random variable \(Y \) is \(\leq X \).
Other Distributions

Solution: Choose y uniformly between 0 and 1, and the corresponding x will be distributed according to P.

$$P(X \leq Y)$$
Java Classes

- `Math.random()`: random double in $[0..1)$.
- **Class java.util.Random**: a random number generator with constructors:
 - `Random()` generator with “random” seed (based on time).
 - `Random(seed)` generator with given starting value (reproducible).
- **Methods**
 - `next(k)` k-bit random integer
 - `nextInt(n)` int in range $[0..n)$.
 - `nextLong()` random 64-bit integer.
 - `nextBoolean()`, `nextFloat()`, `nextDouble()` Next random values of other primitive types.
 - `nextGaussian()` normal distribution with mean 0 and standard deviation 1 (“bell curve”).
- **Collections.shuffle(L, R)** for list R and Random R permutes L randomly (using R).
Shuffling

- A shuffle is a random permutation of some sequence.
- Obvious dumb technique for sorting N-element list:
 - Generate N random numbers
 - Attach each to one of the list elements
 - Sort the list using random numbers as keys.
- Can do quite a bit better:

```java
void shuffle(List L, Random R) {
    for (int i = L.size(); i > 0; i -= 1)
        swap element i-1 of L with element R.nextInt(i) of L;
}
```

- Example:

<table>
<thead>
<tr>
<th>Swap items</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>A♣</td>
<td>2♣</td>
<td>3♣</td>
<td>A♥</td>
<td>2♥</td>
<td>3♥</td>
</tr>
<tr>
<td>5 ⟷ 1</td>
<td>A♣</td>
<td>3♥</td>
<td>3♣</td>
<td>A♥</td>
<td>2♥</td>
<td>2♣</td>
</tr>
<tr>
<td>4 ⟷ 2</td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♣</td>
<td>2♣</td>
</tr>
<tr>
<td>Swap items</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Start</td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♣</td>
<td>2♣</td>
</tr>
<tr>
<td>3 ⟷ 3</td>
<td>2♥</td>
<td>3♥</td>
<td>A♣</td>
<td>A♥</td>
<td>3♣</td>
<td>2♣</td>
</tr>
<tr>
<td>1 ⟷ 0</td>
<td>3♥</td>
<td>2♥</td>
<td>A♣</td>
<td>A♥</td>
<td>3♣</td>
<td>2♣</td>
</tr>
</tbody>
</table>
Random Selection

• Same technique would allow us to select N items from list:

```java
/** Permute L and return sublist of K>=0 randomly
* chosen elements of L, using R as random source. */
List select(List L, int k, Random R) {
    for (int i = L.size(); i+k > L.size(); i -= 1)
        swap element i-1 of L with element
        R.nextInt(i) of L;
    return L.sublist(L.size()-k, L.size());
}
```

• Not terribly efficient for selecting random sequence of K distinct integers from $[0..N)$, with $K \ll N$.
Alternative Selection Algorithm (Floyd)

/** Random sequence of K distinct integers
 * from 0..N-1, 0<=K<=N. */
IntList selectInts(int N, int K, Random R)
{
 IntList S = new IntList();

 for (int i = N-K; i < N; i += 1) {
 // All values in S are < i
 int s = R.randInt(i+1); // 0 <= s <= i < N
 if (s == S.get(j) for some j)
 // Insert value i (which can’t be there
 // yet) after the s (i.e., at a random
 // place other than the front)
 S.add(j+1, i);
 else
 // Insert random value s at front
 S.add(0, s);
 }
 return S;
}

Example

<table>
<thead>
<tr>
<th>i</th>
<th>s</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>[4]</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>[2, 4]</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>[5, 2, 4]</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>[5, 8, 2, 4]</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>[5, 8, 2, 4, 9]</td>
</tr>
</tbody>
</table>

selectRandomIntegers(10, 5, R)