Public Service Announcement

“The Experimental Social Science Laboratory (Xlab) invites you to participate in social science studies! Experiments conducted at Xlab (located in Hearst Gym, Suite 2) are computerized, decision-making studies such as tasks, surveys, and games. We also occasionally offer remote online and mobile studies that can be completed anywhere. Participants earn $15/hour on average every time they participate. For more information, visit xlab.berkeley.edu. To sign up, visit berkeley.sona-systems.com.”
Today:

- More balanced search structures (DS(IJ), Chapter 9)

Coming Up:

- Pseudo-random Numbers (DS(IJ), Chapter 11)
Really Efficient Use of Keys: the Trie

• Have been silent about cost of comparisons.
• For strings, worst case is length of string.
• Therefore should throw extra factor of key length, L, into costs:
 - $\Theta(M)$ comparisons really means $\Theta(ML)$ operations.
 - So to look for key X, keep looking at same chars of X M times.
• Can we do better? Can we get search cost to be $O(L)$?

Idea: Make a multi-way decision tree, with one decision per character of key.
The Trie: Example

- Set of keys
 \{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet\}
- Ticked lines show paths followed for “abash” and “fabric”
- Each internal node corresponds to a possible prefix.
- Characters in path to node = that prefix.
Adding Item to a Trie

- Result of adding bat and faceplate.
- New edges ticked.
A Side-Trip: Scrunching

- For speed, obvious implementation for internal nodes is array indexed by character.

- *Gives* $O(L)$ *performance, L length of search key.*

- [Looks as if independent of N, number of keys. Is there a dependence?]

- **Problem:** arrays are *sparsely populated* by non-null values—waste of space.

Idea: Put the arrays on top of each other!

- Use null (0, empty) entries of one array to hold non-null elements of another.

- Use extra markers to tell which entries belong to which array.
Scrunching Example

Small example: (unrelated to Tries on preceding slides)

- Three leaf arrays, each indexed 0..9

A1:
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>bass</td>
<td>trout</td>
<td>pike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A2:
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>ghee</td>
<td>milk</td>
<td>oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A3:
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>salt</td>
<td>cumin</td>
<td>mace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Now overlay them, but keep track of original index of each item:

<table>
<thead>
<tr>
<th>0</th>
<th>1*</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5*</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2*</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6*</th>
<th>7*</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5*</th>
<th>6</th>
<th>7*</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A123:
<table>
<thead>
<tr>
<th>0</th>
<th>-1</th>
<th>1</th>
<th>-1</th>
<th>2</th>
<th>5</th>
<th>5</th>
<th>7</th>
<th>6</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>bass</td>
<td>trout</td>
<td>pike</td>
<td>ghee</td>
<td>milk</td>
<td>oil</td>
<td>salt</td>
<td>cumin</td>
<td>mace</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large segments.

• Typical example:

• To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are $> k$ high as there are that are k high.

• Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

 ![Skip List Diagram]

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(> k \) high as there are that are \(k \) high.
 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 ![Diagram of a skip list]

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 - Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.

 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $\geq k$ high as there are that are k high.
- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are $> k$ high as there are that are k high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

 \[\begin{array}{cccccccccccccc}
 \infty & 10 & 20 & 25 & 30 & 40 & 50 & 55 & 60 & 90 & 95 & 100 & 115 & 120 & 125 & 130 & 140 & 150 & \infty \\
 \hline
 3 & & & & & & & & & & & & & & & & & \\
 1 & & & & & & & & & & & & & & & & & \\
 0 & & & & & & & & & & & & & & & & & \\
 \end{array} \]

 \[\downarrow \]

 \[\Rightarrow \]

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(k \) high as there are that are \(k \) high.
- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large segments.

• Typical example:

```
−∞ 0 1 2 3
10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 15
```

• To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2} \) as many nodes that are \(> k \) high as there are that are \(k \) high.

• Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 ![Skip List Diagram]

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about \(1/2\) as many nodes that are \(> k\) high as there are that are \(k\) high.
 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2} \) as many nodes that are \(> k \) high as there are that are \(k \) high.
 - Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large segments.

• Typical example:

 ![Skip List Diagram]

 • To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 • In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 • Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.

 • Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

• **A skip list** can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large segments.

• Typical example:

![Diagram of a skip list]

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(k \) high as there are that are \(k \) high.

- Makes searches fast with high probability.
Example: Adding and deleting

• Starting from initial list:

• In any order, we add 126 and 127 (choosing random heights for them), and remove 20 and 40:

• Shaded nodes here have been modified.
Summary

• Balance in search trees allows us to realize $\Theta(lg N)$ performance.

• B-trees, red-black trees:
 - Give $\Theta(lg N)$ performance for searches, insertions, deletions.
 - B-trees good for external storage. Large nodes minimize # of I/O operations

• Tries:
 - Give $\Theta(B)$ performance for searches, insertions, and deletions, where B is length of key being processed.
 - But hard to manage space efficiently.

• Interesting idea: scrunched arrays share space.

• Skip lists:
 - Give probable $\Theta(lg N)$ performance for searches, insertions, deletions
 - Easy to implement.
 - Presented for interesting ideas: probabilistic balance, randomized data structures.
Summary of Collection Abstractions

- **Multiset**
 - contains, iterator

- **List**
 - get(n)

- **Set**
 - **Ordered Set**
 - first
 - **Unordered Set**

- **Priority Queue**

- **Sorted Set**
 - subset

- **Map**
 - contains, iterator
 - get

- **Unordered Map**

- **Ordered Map**

Blue: Java has corresponding interface

Green: Java has no corresponding interface
Data Structures that Implement Abstractions

Multiset

- **List**: arrays, linked lists, circular buffers
- **Set**
 - **OrderedSet**
 - *Priority Queue*: heaps
 - *Sorted Set*: binary search trees, red-black trees, B-trees, sorted arrays or linked lists
 - **Unordered Set**: hash table

Map

- **Unordered Map**: hash table
- **Ordered Map**: red-black trees, B-trees, sorted arrays or linked lists
Corresponding Classes in Java

Multiset (Collection)

- **List**: ArrayList, LinkedList, Stack, ArrayBlockingQueue, ArrayDeque
- **Set**
 - *OrderedSet*
 - *Priority Queue*: PriorityQueue
 - *Sorted Set (SortedSet)*: TreeSet
- *Unordered Set*: HashSet

Map

- *Unordered Map*: HashMap
- *Ordered Map (SortedMap)*: TreeMap