CS61B Lecture #16: Complexity

Announcements:

- Programming contest 14 October. Details to follow.
What Are the Questions?

- **Cost is a principal concern throughout engineering:**

 “An engineer is someone who can do for a dime what any fool can do for a dollar.”

- **Cost can mean**

 - Operational cost (for programs, time to run, space requirements).
 - Development costs: How much engineering time? When delivered?
 - Costs of failure: How robust? How safe?

- **Is this program fast enough? Depends on:**

 - *For what purpose;*
 - *What input data.*

- **How much space (memory, disk space)?**

 - Again depends on what input data.

- **How will it scale, as input gets big?**
Enlightening Example

Problem: Scan a text corpus (say 10^7 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.

- Solution 2 (Doug McIlroy): UNIX shell script:

 tr -c -s [:alpha:]'\n* < FILE | \n sort | \n uniq -c | \n sort -n -r -k 1,1 | \n sed 20q

- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 30MB in < 8 sec.
 - I pick #2.

- In most cases, anything will do: Keep It Simple.
Cost Measures (Time)

- Wall-clock or execution time
 - You can do this at home:

    ```
    time java FindPrimes 1000
    ```
 - Advantages: easy to measure, meaning is obvious.
 - Appropriate where time is critical (real-time systems, e.g.).
 - Disadvantages: applies only to specific data set, compiler, machine, etc.

- Number of times certain statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn’t tell you actual time, still applies only to specific data sets.

- Symbolic execution times:
 - That is, formulas for execution times as functions of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.
Asymptotic Cost

- Symbolic execution time lets us see shape of the cost function.
- Since we are approximating anyway, pointless to be precise about certain things:
 - Behavior on small inputs:
 * Can always pre-calculate some results.
 * Times for small inputs not usually important.
 - Constant factors (as in “off by factor of 2“):
 * Just changing machines causes constant-factor change.
- How to abstract away from (i.e., ignore) these things?
Handy Tool: Order Notation

- Idea: Don’t try to produce specific functions that specify size, but rather families of similar functions.

- Say something like “f is bounded by g if it is in g’s family.”

- For any function $g(x)$, the functions $2g(x)$, $1000g(x)$, or for any $K > 0$, $K \cdot g(x)$, all have the same “shape”. So put all of them into g’s family.

- Any function $h(x)$ such that $h(x) = K \cdot g(x)$ for $x > M$ (for some constant M) has g’s shape “except for small values.” So put all of these in g’s family.

- If we want upper limits, throw in all functions that are everywhere \leq some member of g’s family. Call this family $O(g)$ or $O(g(n))$.

- Or, if we want lower limits, throw in all functions that are everywhere \geq some member of g’s family. Call this family $\Omega(g)$.

- Finally, define $\Theta(g) = O(g) \cap \Omega(g)$—the set of functions bracketed by two members of g’s family.
Big Oh

- **Goal:** Specify bounding from above.

\[
M = 1
\]

\[
2g(x)
\]

\[
f(x)
\]

\[
g(x)
\]

- Here, \(f(x) \leq 2g(x) \) as long as \(x > 1 \),

- So \(f(x) \) is in \(g \)'s upper-bound family, written \(f(x) \in O(g(x)) \),

- \(\ldots \) even though (in this case) \(f(x) > g(x) \) everywhere.
Big Omega

- **Goal:** Specify bounding from below:

\[M = 1 \]

- Here, \(f'(x) \geq \frac{1}{2}g(x) \) as long as \(x > 1 \).

- So \(f'(x) \) is in \(g \)'s lower-bound family, written

\[f'(x) \in \Omega(g(x)), \]

- ... even though \(f(x) < g(x) \) everywhere.
Big Theta

• In the two previous slides, we not only have \(f(x) \in O(g(x)) \) and \(f'(x) \in \Omega(g(x)) \), ...

• ... but also \(f(x) \in \Omega(g(x)) \) and \(f'(x) \in O(g(x)) \).

• We can summarize this all by saying \(f(x) \in \Theta(g(x)) \) and \(f'(x) \in \Theta(g(x)) \).
How We Use Order Notation

- Elsewhere in mathematics, you’ll see $O(\ldots)$, etc., used generally to specify bounds on functions.

- For example,

$$\pi(N) = \Theta\left(\frac{N}{\ln N}\right)$$

which I would prefer to write

$$\pi(N) \in \Theta\left(\frac{N}{\ln N}\right)$$

(Here, $\pi(N)$ is the number of primes less than or equal to N.)

- Also, you’ll see things like

$$f(x) = x^3 + x^2 + O(x),$$

meaning that $f(x) = x^3 + x^2 + g(x)$ where $g(x) \in O(x)$.

- For our purposes, the functions we will be bounding will be cost functions: functions that measure the amount of execution time or the amount of space required by a program or algorithm.
Why It Matters

- Computer scientists often talk as if constant factors didn’t matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.
- In reality they do matter, but at some point, constants always get swamped.

<table>
<thead>
<tr>
<th>n</th>
<th>$16 \lg n$</th>
<th>\sqrt{n}</th>
<th>n</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>2.8</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4,096</td>
<td>65,636</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>5.7</td>
<td>32</td>
<td>160</td>
<td>1024</td>
<td>32,768</td>
<td>4.2×10^9</td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>8</td>
<td>64</td>
<td>384</td>
<td>4,096</td>
<td>262,144</td>
<td>1.8×10^{19}</td>
</tr>
<tr>
<td>128</td>
<td>112</td>
<td>11</td>
<td>128</td>
<td>896</td>
<td>16,384</td>
<td>2.1×10^9</td>
<td>3.4×10^{38}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>1,024</td>
<td>160</td>
<td>32</td>
<td>1,024</td>
<td>10,240</td>
<td>1.0×10^6</td>
<td>1.1×10^9</td>
<td>1.8×10^{308}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>2^{20}</td>
<td>320</td>
<td>1,024</td>
<td>1.0×10^6</td>
<td>2.1×10^7</td>
<td>1.1×10^{12}</td>
<td>1.2×10^{18}</td>
<td>$6.7 \times 10^{315,652}$</td>
</tr>
</tbody>
</table>
Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size \(N \).
- Entries show the *size of problem* that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- \(N = \) problem size

<table>
<thead>
<tr>
<th>Time ((\mu\text{sec})) for problem size (N)</th>
<th>1 second</th>
<th>Max (N) Possible in 1 hour</th>
<th>1 month</th>
<th>1 century</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lg N)</td>
<td>(10^{300000})</td>
<td>(10^{10000000000})</td>
<td>(10^8 \cdot 10^{11})</td>
<td>(10^9 \cdot 10^{14})</td>
</tr>
<tr>
<td>(N)</td>
<td>(10^6)</td>
<td>(3.6 \cdot 10^9)</td>
<td>(2.7 \cdot 10^{12})</td>
<td>(3.2 \cdot 10^{15})</td>
</tr>
<tr>
<td>(N \lg N)</td>
<td>63000</td>
<td>(1.3 \cdot 10^8)</td>
<td>(7.4 \cdot 10^{10})</td>
<td>(6.9 \cdot 10^{13})</td>
</tr>
<tr>
<td>(N^2)</td>
<td>1000</td>
<td>60000</td>
<td>(1.6 \cdot 10^6)</td>
<td>5.6 (\cdot 10^7)</td>
</tr>
<tr>
<td>(N^3)</td>
<td>100</td>
<td>1500</td>
<td>14000</td>
<td>150000</td>
</tr>
<tr>
<td>(2^N)</td>
<td>20</td>
<td>32</td>
<td>41</td>
<td>51</td>
</tr>
</tbody>
</table>
Using the Notation

• Can use this order notation for any kind of real-valued function.

• We will use them to describe cost functions. Example:

```java
/** Find position of X in list L, or -1 if not found. */
int find(List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals(L.head)) return c;
    return -1;
}
```

• Choose representative operation: number of `.equals` tests.

• If \(N \) is length of \(L \), then loop does at most \(N \) tests: worst-case time is \(N \) tests.

• In fact, total # of instructions executed is roughly proportional to \(N \) in the worst case, so can also say worst-case time is \(O(N) \), regardless of units used to measure.

• Use \(N > M \) provision (in defn. of \(O(\cdot) \)) to handle empty list.
Be Careful

- It’s also true that the worst-case time is $O(N^2)$, since $N \in O(N^2)$ also: Big-Oh bounds are loose.
- The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.
- Instead, we are just saying something about the function that maps N into the largest possible time required to process an array of length N.
- To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.
- But again, that still tells us nothing about best-case time, which happens when we find X at the beginning of the loop. Best-case time is $\Theta(1)$.
Effect of Nested Loops

• Nested loops often lead to polynomial bounds:

```java
for (int i = 0; i < A.length; i += 1)
    for (int j = 0; j < A.length; j += 1)
        if (i != j && A[i] == A[j])
            return true;
return false;
```

• Clearly, time is $O(N^2)$, where $N = A.length$. *Worst-case time is $\Theta(N^2)$.*

• Loop is inefficient though:

```java
for (int i = 0; i < A.length; i += 1)
    for (int j = i+1; j < A.length; j += 1)
        if (A[i] == A[j]) return true;
return false;
```

• Now worst-case time is proportional to

$$N - 1 + N - 2 + \ldots + 1 = N(N - 1)/2 \in \Theta(N^2)$$

(so asymptotic time unchanged by the constant factor).
Recursion and Recurrences: Fast Growth

• Silly example of recursion. In the worst case, both recursive calls happen:

```java
/** True iff X is a substring of S */
boolean occurs(String S, String X) {
    if (S.equals(X)) return true;
    if (S.length() <= X.length()) return false;
    return
        occurs(S.substring(1), X) ||
        occurs(S.substring(0, S.length()-1), X);
}
```

• Define \(C(N) \) to be the worst-case cost of \(\text{occurs}(S,X) \) for \(S \) of length \(N \), \(X \) of fixed size \(N_0 \), measured in \# of calls to \(\text{occurs} \). Then

\[
C(N) = \begin{cases}
1, & \text{if } N \leq N_0, \\
2C(N - 1) + 1 & \text{if } N > N_0
\end{cases}
\]

• So \(C(N) \) grows exponentially:

\[
C(N) = 2C(N - 1) + 1 = 2(2C(N - 2) + 1) + 1 = \ldots = 2(\ldots 2 \cdot 1 + 1) + \ldots + 1
= 2^{N-N_0} + 2^{N-N_0-1} + 2^{N-N_0-2} + \ldots + 1 = 2^{N-N_0+1} - 1 \in \Theta(2^N)
\]
Binary Search: Slow Growth

/** True X iff is an element of S[L .. U]. Assumes *
* S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn(String X, String[] S, int L, int U) {
 if (L > U) return false;
 int M = (L+U)/2;
 int direct = X.compareTo(S[M]);
 if (direct < 0) return isIn(X, S, L, M-1);
 else if (direct > 0) return isIn(X, S, M+1, U);
 else return true;
}

• Here, worst-case time, $C(D)$, (as measured by # of string comparisons), depends on size $D = U - L + 1$.

• We eliminate $S[M]$ from consideration each time and look at half the rest. Assume $D = 2^k - 1$ for simplicity, so:

$$C(D) = \begin{cases}
0, & \text{if } D \leq 0, \\
1 + C((D - 1)/2), & \text{if } D > 0.
\end{cases}$$

$$= 1 + 1 + \ldots + 1 + 0$$

$$= k = \lceil \lg D \rceil \in \Theta(\lg D)$$
Another Typical Pattern: Merge Sort

List sort(List L) {
 if (L.length() < 2) return L;
 Split L into L0 and L1 of about equal size;
 L0 = sort(L0); L1 = sort(L1);
 return Merge of L0 and L1
}

Merge ("combine into a single ordered list") takes time proportional to size of its result.

• Assuming that size of L is $N = 2^k$, worst-case cost function, $C(N)$, counting just merge time (\propto # items merged):

$$C(N) = \begin{cases}
1, & \text{if } N < 2; \\
2C(N/2) + N, & \text{if } N \geq 2.
\end{cases}$$

$$= 2(2C(N/4) + N/2) + N$$
$$= 4C(N/4) + N + N$$
$$= 8C(N/8) + N + N + N$$
$$= N \cdot 1 + \underbrace{N + N + \ldots + N}_{k = \lg N}$$
$$= N + N \lg N \in \Theta(N \lg N)$$

• In general, $\Theta(N \lg N)$ for arbitrary N (not just 2^k).