class A {
 void f() {
 System.out.println("A.f");
 }
 void g() { f(); /* or this.f() */ }
}
class B extends A {
 void f() {
 System.out.println("B.f");
 }
}
class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }
 static void h(A x) { x.g(); }
}

1. What is printed?
2. If we made g static? Choices
 a. A.f
 b. B.f
 c. Some kind of error
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?
Review: A Puzzle

class A {
 void f() {
 System.out.println("A.f");
 }
 void g() { f(); /* or this.f() */ }
}
class B extends A {
 void f() {
 System.out.println("B.f");
 }
}
class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }
 static void h(A x) { x.g(); }
}

1. What is printed?
2. If we made g static?
 a. A.f
 b. B.f
 c. Some kind of error
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?
class A {
 void f() {
 System.out.println("A.f");
 }
 static void g(A y) { y.f(); }
}

class B extends A {
 void f() {
 System.out.println("B.f");
 }
}

class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }

 static void h(A x) { A.g(x); } // x.g(x) also legal here
}

1. What is printed?
2. If we made g static?
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?

Choices
a. A.f
b. B.f
c. Some kind of error
Review: A Puzzle

class A {
 void f() {
 System.out.println("A.f");
 }
 static void g(A y) { y.f(); }
}

class B extends A {
 void f() {
 System.out.println("B.f");
 }
}

class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }

 static void h(A x) { A.g(x); } // x.g(x) also legal here
}

1. What is printed?
2. If we made g static?
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?

Choices
a. A.f
b. B.f
c. Some kind of error
Review: A Puzzle

class A {
 static void f() {
 System.out.println("A.f");
 }
 void g() { f(); /* or this.f() */ }
}

class B extends A {
 static void f() {
 System.out.println("B.f");
 }
}

class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }

 static void h(A x) { x.g(); }
}

1. What is printed?
2. If we made g static?
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?

Choices
a. A.f
b. B.f
c. Some kind of error
Review: A Puzzle

class A {
 static void f() {
 System.out.println("A.f");
 }
 void g() { f(); /* or this.f() */ }
}

class B extends A {
 static void f() {
 System.out.println("B.f");
 }
}

class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }
 static void h(A x) { x.g(); }
}

1. What is printed?
2. If we made g static?
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?

Choices
a. A.f
b. B.f
c. Some kind of error
class A {
 void f() {
 System.out.println("A.f");
 }
 void g() { f(); /* or this.f() */ }
}

class B extends A {
 void f() {
 System.out.println("B.f");
 }
 void g() { f(); }
}

class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }

 static void h(A x) { x.g(); }
}

1. What is printed?
2. If we made g static?
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?

Choices
a. A.f
b. B.f
c. Some kind of error
Review: A Puzzle

class A {
 void f() {
 System.out.println("A.f");
 }
 void g() { f(); /* or this.f() */ }
}

class B extends A {
 void f() {
 System.out.println("B.f");
 }
 void g() { f(); }
}

class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }

 static void h(A x) { x.g(); }
}

1. What is printed?
2. If we made g static?
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?

Choices
 a. A.f
 b. B.f
 c. Some kind of error
Review: A Puzzle

class A {
 void g() { f(); /* or this.f() */ }
}

class B extends A {
 void f() {
 System.out.println("B.f");
 }
}

class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }

 static void h(A x) { x.g(); }
}

1. What is printed?
2. If we made g static?
 Choices
 a. A.f
 b. B.f
 c. Some kind of error
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?
class A {
 void g() { f(); /* or this.f() */ }
}

class B extends A {
 void f() {
 System.out.println("B.f");
 }
}

class C {
 static void main(String[] args) {
 B aB = new B();
 h(aB);
 }

 static void h(A x) { x.g(); }
}

1. What is printed?
2. If we made g static?
3. If we made f static?
4. If we overrode g in B?
5. If f not defined in A?

Choices
a. A.f
b. B.f
c. Some kind of error
Answer to Puzzle

1. Executing java C prints _____, because
 A. C.main calls h and passes it aB, whose dynamic type is B.
 B. h calls x.g(). Since g is inherited by B, we execute the code for g in class A.
 C. g calls this.f(). Now this contains the value of h's argument, whose dynamic type is B. Therefore, we execute the definition of f that is in B.
 D. In calls to f, in other words, static type is ignored in figuring out what method to call.

2. If g were static, we see _____; selection of f still depends on dynamic type of this. Same for overriding g in B.

3. If f were static, would print _____ because then selection of f would depend on static type of this, which is A.

4. If f were not defined in A, we'd see _____
Answer to Puzzle

1. Executing `java C` prints _B.f_, because

 A. `C.main` calls `h` and passes it _aB_, whose dynamic type is _B_.

 B. `h` calls `x.g()`. Since `g` is inherited by _B_, we execute the code for `g` in class _A_.

 C. `g` calls `this.f()`. Now `this` contains the value of `h`'s argument, whose dynamic type is _B_. Therefore, we execute the definition of `f` that is in _B_.

 D. In calls to `f`, in other words, static type is ignored in figuring out what method to call.

2. If `g` were static, we see _B.f_; selection of `f` still depends on dynamic type of _this_. Same for overriding `g` in _B_.

3. If `f` were static, would print _A.f_ because then selection of `f` would depend on static type of _this_, which is _A_.

4. If `f` were not defined in _A_, we'd see **a compile-time error**
Example: Designing a Class

Problem: Want a class that represents histograms, like this one:

Analysis: What do we need from it? At least:

• Specify buckets and limits.
• Accumulate counts of values.
• Retrieve counts of values.
• Retrieve numbers of buckets and other initial parameters.
Specification Seen by Clients

• The clients of a module (class, program, etc.) are the programs or methods that use that module’s exported definitions.

• In Java, intention is that exported definitions are designated public.

• Clients are intended to rely on specifications, (aka APIs) not code.

• Syntactic specification: method and constructor headers—syntax needed to use.

• Semantic specification: what they do. No formal notation, so use comments.
 - Semantic specification is a contract.
 - Conditions client must satisfy (preconditions, marked “Pre:” in examples below).
 - Promised results (postconditions).
 - Design these to be all the client needs!
 - Exceptions communicate errors, specifically failure to meet pre-conditions.
/** A histogram of floating-point values */
public interface Histogram {
 /** The number of buckets in THIS. */
 int size();

 /** Lower bound of bucket #K. Pre: 0<=K<size(). */
 double low(int k);

 /** # of values in bucket #K. Pre: 0<=K<size(). */
 int count(int k);

 /** Add VAL to the histogram. */
 void add(double val);
}

void fillHistogram(Histogram H, Scanner in) {
 while (in.hasNextDouble())
 H.add(in.nextDouble());
}

void printHistogram(Histogram H) {
 for (int i = 0; i < H.size(); i += 1)
 System.out.printf(">=%5.2f | %4d%n", H.low(i), H.count(i));
}
public class FixedHistogram implements Histogram {
 private double low, high; // From constructor*/
 private int[] count; // Value counts */

 /** A new histogram with SIZE buckets of values >= LOW and < HIGH. */
 public FixedHistogram(int size, double low, double high) {
 if (low >= high || size <= 0) throw new IllegalArgumentException();
 this.low = low;
 this.high = high;
 this.count = new int[size];
 }

 public int size() { return count.length; }
 public double low(int k) { return low + k * (high-low)/count.length; }

 public int count(int k) { return count[k]; }

 public void add(double val) {
 if (val >= low && val < high)
 count[(int) ((val-low)/(high-low) * count.length)] += 1;
 }
}
Let's Make a Tiny Change

Don't require *a priori* bounds:

class FlexHistogram implements Histogram {
 /** A new histogram with SIZE buckets. */
 public FlexHistogram(int size) {
 ?
 }
 // What needs to change?
}

- How would you do this? Profoundly changes implementation.
- But clients (like printHistogram and fillHistogram) still work with no changes.
- Illustrates the power of *separation of concerns*.
Implementing the Tiny Change

• Pointless to pre-allocate the `count` array.
• Don’t know bounds, so must save arguments to `add`.
• Then recompute `count` array “lazily” when `count(···)` called.
• Invalidate `count` array whenever histogram changes.

```java
class FlexHistogram implements Histogram {
    private ArrayList<Double> values = new ArrayList<>();
    int size;
    private int[] count;

    public FlexHistogram(int size) { this.size = size; this.count = null; }

    public void add(double x) { count = null; values.add(x); }

    public int count(int k) {
        if (count == null) { compute count from values here. }
        return count[k];
    }
}
```
Advantages of Procedural Interface over Visible Fields

By using public method for `count` instead of making the array `count` visible, the “tiny change” is transparent to clients:

- If client had to write `myHist.count[k]`, would mean

 “The number of items currently in the k^{th} bucket of histogram `myHist` (and by the way, there is an array called `count` in `myHist` that always holds the up-to-date count).”

- Parenthetical comment *useless* to the client.

- But if `count` array had been visible, after “tiny change,” every use of `count` in client program would have to change.

- So using a method for the public `count` decreases what client has to know, and (therefore) has to change.