1 Law and Order

Write the pre-order, in-order, post-order, DFS, and BFS traversal of the following binary search tree. Assume for DFS and BFS, process child nodes left to right.

```
  10
 / \
 3   12
 / \ /
1   7 13
   \ /
    15
```

2 Is This a BST?

The following code should check if a given binary tree is a BST. However, for some binary trees, it is returning the wrong answer. Think about an example of a binary tree for which the method fails. Then, write `isBSTGood` so that it is correct. **Hint:** You will find `Integer.MIN_VALUE` and `Integer.MAX_VALUE` helpful.

```java
public static boolean isBSTBad(TreeNode T) {
    if (T == null) {
        return true;
    } else if (T.left != null && T.left.val > T.val) {
        return false;
    } else if (T.right != null && T.right.val < T.val) {
        return false;
    } else {
        return isBSTBad(T.left) && isBSTBad(T.right);
    }
}

public static boolean isBSTGood(TreeNode T) {
    return isBSTHelper();
}

public static boolean isBSTHelper() {
}
```
3 Sum Paths

Define a root-to-leaf path as a sequence of nodes from the root of a tree to one of its leaves. Write a method \texttt{printSumPaths(TreeNode T, int k)} that prints out all root-to-leaf paths whose values sum to \(k \). For example, if \texttt{RootNode} is the binary tree rooted in 10 in the diagram below and \(k \) is 13, then the program will print out 10 2 1 on one line and 10 4 -1 on another.

\[
\begin{array}{c}
10 \\
/ \ \\
2 4 \\
/ \ \\
5 1 -1
\end{array}
\]

(a) Provide your solution by filling in the code below:

\[
\begin{align*}
\text{public static void } & \text{ printSumPaths(TreeNode } T, \text{ int } k \text{) } \\
& \{ \\
& \quad \text{if (} T \neq \text{ null} \text{) } \\
& \quad \quad \text{sumPaths(} \\
& \quad \quad \quad \text{);} \\
& \quad \} \\
& \} \\
\text{public static void } & \text{ sumPaths(TreeNode } T, \text{ int } k, \text{ String path) } \\
& \{
\end{align*}
\]

(b) What is the worst case running time of the \texttt{printSumPaths} in terms of \(N \), the number of nodes in the tree? What is the worst case running time in terms of \(h \), the height of the tree?