
CS61B Lecture #7

Announcements:

• Programming Contest coming up: 3 October. Watch for details.

• Computer Science Mentors (CSM) is holding adjunct sections that
you can sign up for this semester. These are small groups of stu-
dents, led by a trained mentor, that meet weekly and provide addi-
tional practice and guidance with course material. Sign-up deadline
is Friday, 18 September (next week). See also Piazza post @520.

• Homework #2 was released late Wednesday.

• Project #0 will be released soon. Watch for it.

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 1

Object-Based Programming

Basic Idea.

• Function-based programs are organized primarily around the func-
tions (methods, etc.) that do things. Data structures (objects) are
considered separate.

• Object-based programs are organized around the types of objects
that are used to represent data; methods are grouped by type of
object.

• Simple banking-system example:

account

deposit

account

account

withdraw

account

Function-based

Account

deposit

withdraw balance: 1420

Exported
methods

Exported
field

Object-based

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 2

Philosophy

• Idea (from 1970s and before): An abstract data type is

– a set of possible values (a domain), plus

– a set of operations on those values (or their containers).

• In IntList, for example, the domain was a set of pairs: (head,tail),
where head is an int and tail is a pointer to an IntList.

• The IntList operations consisted only of assigning to and accessing
the two fields (head and tail).

• In general, prefer a purely procedural interface, where the func-
tions (methods) do everything—no outside access to fields.

• That way, implementor of a class and its methods has complete con-
trol over behavior of instances.

• In Java, the preferred way to write the “operations of a type” is as
instance methods.

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 3

You Saw It All in CS61A: The Account Class

class Account:

balance = 0

def __init__(self, balance0):

self.balance = balance0

def deposit(self, amount):

self.balance += amount

return self.balance

def withdraw(self, amount):

if self.balance < amount:

raise ValueError \

("Insufficient funds")

else:

self.balance -= amount

return self.balance

my_account = Account(1000)

my_account.balance

my_account.deposit(100)

my_-account.withdraw(500)

public class Account {

public int balance;

public Account (int balance0) {

balance = balance0;

}

public int deposit (int amount) {

balance += amount; return balance;

}

public int withdraw (int amount) {

if (balance < amount)

throw new IllegalStateException

("Insufficient funds");

else balance -= amount;

return balance;

}

}

Account myAccount = new Account (1000);

myAccount.balance

myAccount.deposit (100);

myAccount.withdraw(500);

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 4



You Also Saw It All in CS61AS

(define-class (account balance0)

(instance-vars (balance 0))

(initialize

(set! balance balance0))

(method (deposit amount)

(set! balance (+ balance amount))

balance)

(method (withdraw amount)

(if (< balance amount)

(error "Insufficient funds")

(begin

(set! balance (- balance amount))

balance))) )

(define my-account

(instantiate account 1000))

(ask my-account ’balance)

(ask my-account ’deposit 100)

(ask my-account ’withdraw 500)

public class Account {

public int balance;

public Account (int balance0) {

balance = balance0;

}

public int deposit (int amount) {

balance += amount; return balance;

}

public int withdraw (int amount) {

if (balance < amount)

throw new IllegalStateException

("Insufficient funds");

else balance -= amount;

return balance;

}

}

Account myAccount = new Account (1000);

myAccount.balance

myAccount.deposit (100);

myAccount.withdraw(500);

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 5

The Pieces

• Class declaration defines a new type of object, i.e., new type of
structured container.

• Instance variables such as balance are the simple containers within
these objects (fields or components).

• Instance methods, such as deposit and withdraw are like ordinary
(static) methods that take an invisible extra parameter (called this).

• The new operator creates (instantiates) new objects, and initializes
them using constructors.

• Constructors such as the method-like declaration of Account are
special methods that are used only to initialize new instances. They
take their arguments from the new expression.

• Method selection picks methods to call. For example,

myAccount.deposit(100)

tells us to call the method named deposit that is defined for the
object pointed to by myAccount.

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 6

Getter Methods

• Slight problem with Java version of Account: anyone can assign to
the balance field

• This reduces the control that the implementor of Account has over
possible values of the balance.

• Solution: allow public access only through methods:

public class Account {

private int balance;

...

public int balance () { return balance; }

...

}

• Now the balance field cannot be directly referenced outside of
Account.

• (OK to use name balance for both the field and the method. Java
can tell which is meant by syntax: A.balance vs. A.balance().)

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 7

Class Variables and Methods

• Suppose we want to keep track of the bank’s total funds.

• This number is not associated with any particular Account, but is
common to all—it is class-wide.

• In Java, “class-wide” ≡ static

public class Account {

...

private static int funds = 0;

public int deposit (int amount) {

balance += amount; funds += amount;

return balance;

}

public static int funds () {

return funds;

}

... // Also change withdraw.

}

• From outside, can refer to either Account.funds()
or myAccount.funds() (same thing).

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 8



Instance Methods

• Instance method such as

int deposit (int amount) {

balance += amount; funds += amount;

return balance;

}

behaves sort of like a static method with hidden argument:

static int deposit (final Account this, int amount) {

this.balance += amount; funds += amount;

return this.balance;

}

• NOTE: Just explanatory: Not real Java (not allowed to declare
‘this’). (final is real Java; means “can’t change once set.”)

• Likewise, the instance-method call myAccount.deposit (100) is like
a call on this fictional static method:

Account.deposit (myAccount, 100);

• Inside method, as a convenient abbreviation, can leave off leading
‘this.’ on field access or method call if not ambiguous.

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 9

‘Instance’ and ‘Static’ Don’t Mix

• Since real static methods don’t have the invisible this parameter,
makes no sense to refer directly to instance variables in them:

public static int badBalance (Account A) {

int x = A.balance; // This is OK (A tells us whose balance)

return balance; // WRONG! NONSENSE!

}

• Reference to balance here equivalent to this.balance,

• But this is meaningless (whose balance?)

• However, it makes perfect sense to access a static (class-wide) field
or method in an instance method or constructor, as happened with
funds in the deposit method.

• There’s only one of each static field, so don’t need to have a ‘this’ to
get it. Can just name the class.

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 10

Constructors

• To completely control objects of some class, you must be able to set
their initial contents.

• A constructor is a kind of special instance method that is called by
the new operator right after it creates a new object, as if

L = new IntList(1,null) =⇒



























tmp = pointer to 0 ;
tmp.IntList(1, null);

L = tmp;

• Instance variables initializations are moved inside constructors:

class Foo {

int x = 5;

Foo () {

DoStuff ();

}

...

}

⇐⇒

class Foo {

int x;

Foo () {

x = 5;

DoStuff ();

}

...

}

• In absence of any explicit constructor, get default constructor:
public Foo() { }.

• Multiple overloaded constructors possible (different parameters).
Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 11

Summary: Java vs. CS61A OOP in Scheme & Python

Java Python CS61AS OOP
class Foo ... class Foo: ... (define-class (Foo args)...
int x = ...; x = ... (instance-vars (x ...))
Foo(args) {...} def __init__(self, args):... (initialize ...)
int f(...) {...} def f(self, ...):... (method (f ...) ...)
static int y = ...; y = ... (class-vars (y ...))

(refer to with Foo.y)
static void g(...) {...} def g(...): [outside classes] (define (g...)...)
... or

@staticmethod
def g(...): ...

aFoo.f (...) aFoo.f(...) (ask aFoo ’f ...)
aFoo.x aFoo.x (ask aFoo ’x)
new Foo (...) Foo(...) (instantiate Foo ...)
this self [typically] self

Last modified: Fri Sep 11 11:18:06 2015 CS61B: Lecture #7 12


	CS61B Lecture #7
	Object-Based Programming
	Philosophy
	You Saw It All in CS61A: The Account Class
	You Also Saw It All in CS61AS
	The Pieces
	Getter Methods
	Class Variables and Methods
	Instance Methods 
	`Instance' and `Static' Don't Mix
	Constructors
	Summary: Java vs. CS61A OOP in Scheme & Python

