Recreation
Prove that for every acute angle o > 0,

tana +cota > 2

Last modified: Fri Sep 4 12:27:18 2015 CS61B: Lecture #5 1

CS61B Lecture #5: Simple Pointer Manipulation

Announcement
e Today: More pointer hacking.

¢ Handing in labs and homework: We'll be lenient about accepting
late homework and labs for the first few. Just get it done: part
of the point is getting to understand the tools involved. We will not
accept submissions by email.

Last modified: Fri Sep 4 12:27:18 2015 CS61B: Lecture #5 2

Destructive Incrementing

Destructive solutions may modify objects in the original list to save
time or space:

/** List of all items in P incremented by n. May destroy original. */
static IntList dincrList(IntList P, int n) {

if (P == null) X = IntList.list(3, 43, 56);
]fetznlnull; /* IntList.list from HW #1 */
else Q = dincrlist(X, 2);

P.head += n;
P.tail = dincrList(P.tail, n);
return P; X:

}
b Q:

[{5] a5 -8l
/**% List L destructively incremented
* by n. */ P:[E;j

static IntList dincrList(IntList L, int n) {
// ’for’ can do more than count!
for (IntList p = L; p != null; p = p.tail)
p.head += n;
return L;

Last modified: Fri Sep 4 12:27:18 2015 CS61B: Lecture #5 3

Another Example: Non-destructive List Deletion

If Lis thelist [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new
list [1, 9].

/** The list resulting from removing all instances of X from L
* non-destructively. */
static IntList removeAll(IntList L, int x) {
if (L == null)
return null;
else if (L.head == x)
return removeAll(L.tail, x);
else
return new IntList(L.head, removeAll(L.tail, x));

Last modified: Fri Sep 4 12:27:18 2015 CS61B: Lecture #5 4

Aside: How to Write a Loop (in Theory)

e Try to give a description of how things look on any arbitrary itera-
tion of the loop.

e This description is known as a loop invariant, because it is true from
one iteration to the next.

e The loop body then must

- Start from any situation consistent with the invariant;
- Make progress in such a way as fo make the invariant true again.
while (condition) {
// Invariant true here
loop body
// Invariant again true here

3

// Invariant true and condition false.

e So if (invariant and not condition) is enough to insure we've got the
answer, we're done!

Last modified: Fri Sep 4 12:27:18 2015 CS61B: Lecture #5 5

Iterative Non-destructive List Deletion

Same as before, but use front-to-back iteration rather than recursion.
/*x The list resulting from removing all instances of X from L
* non-destructively. */
static IntList removeAll(IntList L, int x) {
IntList result, last; .[E}
result = last = null; P: 2‘#—»11‘#—»12‘#—»19[\}
for (; L !=null; L = L.tail) { L;E
/* L '= null and 7 is true. */

if (x == L.head) result:[- HEs=EIN
continue; .
else if (last == null) last: = removeAll (P, 2)

|
result = last = new IntList(L.head, null); P does nOf-Change'
else
last = last.tail = new IntList(L.head, null);

}
return result;

}
Here, I is the loop invariant:
Result is all elements of L; not equal to x up to and not

including L, and last points to the last element of result,
if any. We use L, here to mean “the original sequence of

. . "
int values in L.
Last modified: Fri Sep 4 12:27:18 2015 CS61B: Lecture #5 6

Destructive Deletion

t after Q = dremoveAll (Q,1)

O -T2l Bl A F—{1 301N

— : Original

4

/** The list resulting from removing all instances of X from L.
* The original list may be destroyed. */
static IntList dremoveAll(IntList L, int x) {
if (L == null)
return null;
else if (L.head == x)
return dremoveAll(L.tail, x);
else {
L.tail = dremoveAll(L.tail, x);
return L;

Last modified: Fri Sep 4 12:27:18 2015 CS61B: Lecture #5 7

Iterative Destructive Deletion

/** The list resulting from removing all instances of X from L.
* Original contents of L may be destroyed. */
static IntList dremoveAll(IntList L, int x) {
IntList result, last;
result = last = null;
while (L !'= null) {
IntList next = L.tail;
if (x !'= L.head) { result:
if (last == null) last:
result = last = L;
else L:Eﬂ
lagt last.tail = L; nexf:Eﬂ
L.tail null;

P = dremoveAll (P, 2)

}
L

= next;
}

return result;

}

Last modified: Fri Sep 4 12:27:18 2015 CS61B: Lecture #5 8

	Recreation
	CS61B Lecture #5: Simple Pointer Manipulation
	Destructive Incrementing
	Another Example: Non-destructive List Deletion
	Aside: How to Write a Loop (in Theory)
	Iterative Non-destructive List Deletion
	Destructive Deletion
	Iterative Destructive Deletion

