Recreation

Prove that

L2+ V3)"

is odd for all integer n > 0.

[Source: D. O. Shklarsky, N. N. Chentzov, I. M. Yaglom, The USSR Olympiad Problem
Book, Dover ed. (1993), from the W. H. Freeman edition, 1962.

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 1

CS61B Lecture #4: Values and Containers

e Labs are normally due at midnight Friday.

e Readings for today: Chapter 4 from A Java Reference. See also,
Head First Java, Chapter 3, Chapter 5.

e Looking ahead: Head First Java, Chapters 2 and 4.

e Today. Simple classes. Scheme-like lists. Destructive vs. non-
destructive operations. Models of memory.

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 2

Values and Containers

e Values are numbers, booleans, and pointers. Values never change.

3 ‘a true % AN f

e Simple containers contain values:

(3 L] e
Examples: variables, fields, individual array elements, parameters.

e Structured containers contain (O or more) other containers:

Class Object Array Object Empty Object

Alternative
Notation

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 3

Pointers

e Pointers (or references) are values that reference (point to) con-
tainers.

e One particular pointer, called null, points to nothing.

e In Java, structured containers contain only simple containers, but
pointers allow us to build arbitrarily big or complex structures any-
way.

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 4

Containers in Java

e Containers may be named or anonymous.

e In Java, all simple containers are named, all structured contain-
ers are anonymous, and pointers point only to structured containers.
(Therefore, structured containers contain only simple containers).

named simple containers (fields)
within structured containers

simple container structured containers
(local variable) (anonymous)

e In Java, assignment copies values into simple containers.
e Exactly like Scheme and Python!

e (Python also has slice assignment, as in x[3:7]=. .., which is short-
hand for something else entirely.)

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 5

Defining New Types of Object

e Class declarations introduce new types of objects.
e Example: list of integers:

public class IntList {
// Constructor function
// (used to initialize new object)

/** List cell containing (HEAD, TAIL). %/
public IntList(int head, IntList tail) {
this.head = head; this.tail = tail;

}

// Names of simple containers (fields)

// WARNING: public instance variables usually bad style!
public int head;

public IntList tail;

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 6

Primitive Operations

N
QN

IntList Q, L;

= new IntList(3, null); L: =

=L; CQ:IIi

new IntlList(42, null);
.tail = Q;

L.tail.head += 1;
// Now Q.head == 43
// and L.tail.head == 43

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 7

Side Excursion: Another Way to View Pointers

e Some folks find the idea of “copying an arrow" somewhat odd.
e Alternative view: think of a pointer as a label, like a street address.

e Each object has a permanent label on it, like the address plaque on
a house.

e Then a variable containing a pointer is like a scrap of paper with a
street address written on it.

e One view:
last:

result:| -}~ 5] |- ~145]\

e Alternative view:

last:
result: L5 #3]

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 8

Another Way to View Pointers (II)

e Assigning a pointer to a variable looks just like assigning an integer
to a variable.

e So, after executing "“last = last.tail;" we have
last:

result:| }——+[5] | =45]\]

e Alternative view:

last: | #3 |
resuh“: L5 ‘#3‘ ;’5 N

e Under alternative view, you might be less inclined to think that as-
signment would change object #7 itself, rather than just “last”.

e BEWARE! Internally, pointers really are just numbers, but Java
treats them as more than that: they have types, and you can't just
change integers into pointers.

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 9

Destructive vs. Non-destructive

Problem: Given a (pointer to a) list of integers, L, and an integer in-
crement n, return a list created by incrementing all elements of the list
by n.

/** List of all items in P incremented by n. Does not modify
* existing IntLists. */
static IntList incrList(IntList P, int n) {
return /*(P, with each element incremented by n)*/

}

We say incrList is non-destructive, because it leaves the input objects
unchanged, as shown on the left. A destructive method may modify the
input objects, so that the original data is no longer available, as shown
on the right:

After Q = incrList(L, 2): After Q = dincrList(L, 2) (destructive):
D R W
o[143 1]«

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 10

Nondestructive IncrList: Recursive

/** List of all items in P incremented by n. */
static IntList incrList(IntList P, int n) {
if (P == null)
return null;
else return new IntList(P.head+n, incrList(P.tail, n));

}

e Why does incrList have to return its result, rather than just set-
ting P?

e Inthe call incrList (P, 2),whereP contains 3 and 43, which IntList
object gets created first?

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 11

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)
return null,; P: ‘ 3 ‘ - 43‘ 56N

IntList result, last;
result = last last:

while (P.tail != null) {

= new IntList(P.head+n, null); E/—\
result:| |~ 5] |- +45] | ~58]\]

P = P.tail;
last.tail
= new IntList(P.head+n, null);
last = last.tail; <<<
}

return result;

Last modified: Sun Sep 20 14:47:51 2015 CS61B: Lecture #4 12

	Recreation
	CS61B Lecture #4: Values and Containers
	Values and Containers
	Pointers
	Containers in Java
	Defining New Types of Object
	Primitive Operations
	Side Excursion: Another Way to View Pointers
	Another Way to View Pointers (II)
	Destructive vs. Non-destructive
	Nondestructive IncrList: Recursive
	An Iterative Version

