Lecture #38

Next Friday: HKN surveys. Extra points awarded to those who par-
ticipate!

Today: A little side excursion into nitty-gritty stuff: Storage man-
agement.

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 1

Scope and Lifetime

e Scope of a declaration is portion of program text to which it applies
(is visible).

- Need not be contiguous.
- In Java, is static: independent of data.

e Lifetime or extent of storage is portion of program execution dur-
ing which it exists.

- Always contiguous
- Generally dynamic: depends on data
e Classes of extent:

- Static: entire duration of program

- Local or automatic: duration of call or block execution (local vari-
able)

- Dynamic: From time of allocation statement (new) to dealloca-
tion, if any.

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 2

Explicit vs. Automatic Freeing

e Java has no means to free dynamic storage.

e However, when no expression in any thread can possibly be influ-
enced by or change an object, it might as well not exist:

IntList wasteful ()

{
IntList ¢ = new IntList (3, new IntList (4, null));

return c.tail;
// variable c now deallocated, so no way
// to get to first cell of list

}

e At this point, Java runtime, like Scheme's, recycles the object ¢
pointed to: garbage collection.

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 3

Under the Hood: Allocation

e Java pointers (references) are represented as integer addresses.
e Corresponds to machine's own practice.
e In Java, cannot convert integers < pointers,

e But crucial parts of Java runtime implemented in C, or sometimes
machine code, where you can.

e Crude allocator in C:

char store[STORAGE_SIZE]; // Allocated array
size_t remainder = STORAGE_SIZE;

/** A pointer to a block of at least N bytes of storage */
void* simpleAlloc (size_t n) { // void*: pointer to anything
if (n > remainder) ERROR ();
remainder = (remainder - n) & “0x7; // Make multiple of 8
return (void*) (store + remainder);

}

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 4

Example of Storage Layout: Unix

Address O

Stack
(local)

i

~Unallocated

T

Heap
(new)

Static
storage

Executable
code

e OS gives way to turn chunks of unallocated region into heap.

e Happens automatically for stack.

Last modified: Wed Nov 26 12:56:27 2014

CS61B: Lecture #38 b5

Explicit Deallocating

e C/C++ normally require explicit deallocation, because of

- Lack of run-time information about what is array
- Possibility of converting pointers to integers.
- Lack of run-time information about unions:

union Various {
int Int;
charx Pntr;
double Double;
} X; // X is either an int, char*, or double

e Java avoids all three problems; automatic collection possible.
e Explicit freeing can be somewhat faster, but rather error-prone:

- Memory corruption
- Memory leaks

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 6

Free Lists

e Explicit allocator grabs chunks of storage from OS and gives to
applications.

e Or gives recycled storage, when available.

e When storage is freed, added to a free list data structure to be
recycled.

e Used both for explicit freeing and some kinds of automatic garbage
collection.

e Problem: free memory fragments.

Variables X Y
(visible to program) '\
The Heap |

|
-)

Free List _——

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 7

Garbage Collection: Reference Counting

e Idea: Keep count of number of pointers to each object. Release
when count goes to O.

Y = X.tail;
AN yi[]
\
Xe| F—{1]] F—{1] | FHEN Xi| B e P I
\ \
[1|A| ——=1|B] FIEN LA —1[B] ——1|C]\]
X =Y
y y
Y \/
X O =3 =]. X =2 =1
\
1]A 118 1]¢ olA J1[B JITCN] ete.

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 8

Garbage Collection:

Roots (locals + statics)

Mark and Sweep

1. Traverse and mark
graph of objects.

2. Sweep through

0 G memory, freeing
~ \ 2L unmarked objects.
<17
C A
42
L/F
A B C D* E* G*
Before sweep: |42 D FlA G| D C E
B D E G
After sweep: D G|D E

Last modified: Wed Nov 26 12:56:27 2014

CS61B: Lecture #38 9

Copying Garbage Collection

e Mark-and-sweep algorithms don't move any exisiting objects—pointers
stay the same.

e The total amount of work depends on the amount of memory swept—
i.e., the total amount of active (hon-garbage) storage + amount of
garbage. Not necessarily a big hit: the garbage had to be active at
one time, and hence there was always some “"good" processing in the
past for each byte of garbage scanned.

e Another approach: copying garbage collection takes time propor-
tional to amount of active storage:

- Traverse the graph of active objects breadth first, copying them
into a large contiguous area (called "fo-space”).

- As you copy each object, mark it and put a forwarding pointer
into it that points to where you copied it.

- The next time you have to copy a marked object, just use its
forwarding pointer instead.

- When done, the space you copied from (“from-space") becomes
the next to-space; in effect, all its objects are freed in constant
time.

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 10

Copying Garbage Collection Illustrated

Roots A B ¢ D E F 6
B from: (42| D |G| F | A 716|D C E
(@) =2
E to:
A
Roots A B ¢ D B F 6
%’ from: |42|B' |G| F | A 716 |F C E
b ')
(b) = . BSTETS B: OId object
' | B": New object
Roots A B ¢ D* B F G
B from: [42|B |G |F|A|D]|7]6]|FE ClG|E
(c) 2 B' E D' G
E to: [D']6]|D 716 E
A
Roots A B ¢ D* B F G
B from: [42|B |G |F|A|D]|7]6]|FE ClG|E
d) =2 B EF D G
E to: (DG D 716 E

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 11

	Lecture #38
	Scope and Lifetime
	Explicit vs. Automatic Freeing
	Under the Hood: Allocation
	Example of Storage Layout: Unix
	Explicit Deallocating
	Free Lists
	Garbage Collection: Reference Counting
	Garbage Collection: Mark and Sweep
	Copying Garbage Collection
	Copying Garbage Collection Illustrated

