Lecture #38

Next Friday: HKN surveys. Extra points awarded to those who par-
ticipate!

Today: A little side excursion into nitty-gritty stuff: Storage man-
agement.
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Scope and Lifetime

e Scope of a declaration is portion of program text to which it applies
(is visible).

- Need not be contiguous.
- In Java, is static: independent of data.

e Lifetime or extent of storage is portion of program execution dur-
ing which it exists.

- Always contiguous
- Generally dynamic: depends on data
e Classes of extent:

- Static: entire duration of program

- Local or automatic: duration of call or block execution (local vari-
able)

- Dynamic: From time of allocation statement (new) to dealloca-
tion, if any.
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Explicit vs. Automatic Freeing

e Java has no means to free dynamic storage.

e However, when no expression in any thread can possibly be influ-
enced by or change an object, it might as well not exist:

IntList wasteful ()

{
IntList ¢ = new IntList (3, new IntList (4, null));

return c.tail;
// variable c now deallocated, so no way
// to get to first cell of list

}

e At this point, Java runtime, like Scheme's, recycles the object ¢
pointed to: garbage collection.

Last modified: Wed Nov 26 12:56:27 2014 CS61B: Lecture #38 3



Under the Hood: Allocation

e Java pointers (references) are represented as integer addresses.
e Corresponds to machine's own practice.
e In Java, cannot convert integers < pointers,

e But crucial parts of Java runtime implemented in C, or sometimes
machine code, where you can.

e Crude allocator in C:

char store[STORAGE_SIZE]; // Allocated array
size_t remainder = STORAGE_SIZE;

/** A pointer to a block of at least N bytes of storage */
void* simpleAlloc (size_t n) { // void*: pointer to anything
if (n > remainder) ERROR ();
remainder = (remainder - n) & “0x7; // Make multiple of 8
return (void*) (store + remainder);

}
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Example of Storage Layout: Unix
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e OS gives way to turn chunks of unallocated region into heap.

e Happens automatically for stack.
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Explicit Deallocating

e C/C++ normally require explicit deallocation, because of

- Lack of run-time information about what is array
- Possibility of converting pointers to integers.
- Lack of run-time information about unions:

union Various {
int Int;
charx Pntr;
double Double;
} X; // X is either an int, char*, or double

e Java avoids all three problems; automatic collection possible.
e Explicit freeing can be somewhat faster, but rather error-prone:

- Memory corruption
- Memory leaks
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Free Lists

e Explicit allocator grabs chunks of storage from OS and gives to
applications.

e Or gives recycled storage, when available.

e When storage is freed, added to a free list data structure to be
recycled.

e Used both for explicit freeing and some kinds of automatic garbage
collection.

e Problem: free memory fragments.
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Garbage Collection: Reference Counting

e Idea: Keep count of number of pointers to each object. Release
when count goes to O.
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Garbage Collection:

Roots (locals + statics)

Mark and Sweep

1. Traverse and mark
graph of objects.

2. Sweep through
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Copying Garbage Collection

e Mark-and-sweep algorithms don't move any exisiting objects—pointers
stay the same.

e The total amount of work depends on the amount of memory swept—
i.e., the total amount of active (hon-garbage) storage + amount of
garbage. Not necessarily a big hit: the garbage had to be active at
one time, and hence there was always some “"good" processing in the
past for each byte of garbage scanned.

e Another approach: copying garbage collection takes time propor-
tional to amount of active storage:

- Traverse the graph of active objects breadth first, copying them
into a large contiguous area (called "fo-space”).

- As you copy each object, mark it and put a forwarding pointer
into it that points to where you copied it.

- The next time you have to copy a marked object, just use its
forwarding pointer instead.

- When done, the space you copied from (“from-space") becomes
the next to-space; in effect, all its objects are freed in constant
time.
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Copying Garbage Collection Illustrated
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