CS61B Lecture #35

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35 1

Recursive Depth-First Traversal of a Graph

e Can fix looping and combinatorial problems using the "bread-crumb”
method used in earlier lectures for a maze.

e That is, mark nodes as we traverse them and don't fraverse previ-
ously marked nodes.

e Makes sense to talk about preorder and postorder, as for trees.

void preorderTraverse(Graph G, Node v) { void postorderTraverse(Graph G, Node v)

if (v is unmarked) { if (v is unmarked) {
mark (v); mark (v);
visit v; for (Edge (v, w) € G)
for (Edge (v, w) € G) traverse(G, w);
traverse(G, w); visit v;

}

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35 2

Recursive Depth-First Traversal of a Graph (IT)

e We are often interested in traversing all nodes of a graph, not just
those reachable from one node.

e So we can repeat the procedure as long as there are unmarked
nodes.

void preorderTraverse(Graph G) {
for (v € nodes of G) {
preorderTraverse(G, v);

}

void postorderTraverse(Graph G) {
for (v € nodes of G) {
postorderTraverse(G, v);

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35 3

Topological Sorting
Problem: Given a DAG, find a linear order of nodes consistent with
the edges.

e That is, order the nodes vy, vy, ... such that v is never reachable
from vy if ¥’ > k.

e Gmake does this. Also PERT charts.

IMOT ®> 1O

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35 4

Sorting and Depth First Search

e Observation: Suppose we reverse the links on our graph.

e If we do a recursive DFS on the reverse graph, starting from node
H, for example, we will find all nodes that must come before H.

e When the search reaches a node in the reversed graph and there
are no successors, we know that it is safe to put that node first.

e Ingeneral, a postorder traversal of the reversed graph visits nodes
only after all predecessors have been visited.

Numbers show post-
order traversal order
starting from G: every-
thing that must come
before 6.

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35 5

General 6raph Traversal Algorithm

COLLECTION_OF_VERTICES fringe;

fringe = INITIAL_COLLECTION;
while (! fringe.isEmpty()) {
Vertex v = fringe.REMOVE HIGHEST PRIORITY.ITEMQ);

if (1 MARKED (v)) {
MARK (v) ;
VISIT(v);
For each edge (v,w) {
if (NEEDS_PROCESSING (w))
Add w to fringe;
}
}
}

Replace COLLECTION _OF VERTICES, INITIAL COLLECTION, etc.
with various types, expressions, or methods to different graph algo-
rithms.

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35 6

Example: Depth-First Traversal

Problem: Visit every node reachable from v once, visiting nodes fur-
ther from start first.

Stack<Vertex> fringe;

fringe = stack containing {v};
while (! fringe.isEmpty()) {
Vertex v = fringe.pop Q);

if (! marked (v)) {
mark (v) ;
VISIT (v);
For each edge (v,w) {
if (! marked (w))
fringe.push (w);

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35 7

Depth-First Traversal Illustrated

b
Marked: O c e c e
d) (P d) d)

Fringe: [a] [d,f,e,d]

oRG

d
0

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35 8

Topological Sort in Action

[A,C,B,F] [A,C,B,F,D]

Last modified: Fri Nov 21 03:39:44 2014

[A,C,B,F,D,E,G,H]

CS61B: Lecture #35 9

Shortest Paths: Dijkstra’'s Algorithm

Problem: Given a graph (directed or undirected) with non-negative
edge weights, compute shortest paths from given source node, s, to
all nodes.

e "Shortest” = sum of weights along path is smallest.
e For each node, keep estimated distance from s, ...
e ...and of preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;
For each node v { v.dist() = oo; v.back() = null; }
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
Vertex v = fringe.removeFirst ();

For each edge (v,w) {
if (v.dist() + weight(v,w) < w.dist())
{ w.dist() = v.dist() + weight(v,w); w.back() = v; }
}
}

Last modified: Fri Nov 21 03:39:44 2014 CS61B: Lecture #35

Final result:

Last modified: Fri Nov 21 03:39:44 2014

Example

---+ Shortest-path tree
@ processed node at distance d

@ node in fringe at distance d

CS61B: Lecture #35 11

	CS61B Lecture #35
	Recursive Depth-First Traversal of a Graph
	Recursive Depth-First Traversal of a Graph (II)
	Topological Sorting
	Sorting and Depth First Search
	General Graph Traversal Algorithm
	Example: Depth-First Traversal
	Depth-First Traversal Illustrated
	Topological Sort in Action
	Shortest Paths: Dijkstra's Algorithm
	Example

