
CS61B Lecture #34

Administrivia:

• Project due Tuesday night.

• Autograder running with preliminary test sets.

Today’s Readings: Graph Structures: DSIJ, Chapter 12

Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 1



Why Graphs?

• For expressing non-hierarchically related items

• Examples:

– Networks: pipelines, roads, assignment problems

– Representing processes: flow charts, Markov models

– Representing partial orderings: PERT charts, makefiles

Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 2



Some Terminology

• A graph consists of

– A set of nodes (aka vertices)

– A set of edges: pairs of nodes.

– Nodes with an edge between are adjacent.

– Depending on problem, nodes or edges may have labels (or weights)

• Typically call node set V = {v0, . . .}, and edge set E.

• If the edges have an order (first, second), they are directed edges,
and we have a directed graph (digraph), otherwise an undirected
graph.

• Edges are incident to their nodes.

• Directed edges exit one node and enter the next.

• A cycle is a path without repeated edges leading from a node back
to itself (following arrows if directed).

• A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Di-
rected Acyclic Graph—DAG.

Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 3



Some Pictures

a

b

c

dAcyclic:

Directed

a

b

c

d

e
Undirected

a

b

c

dCyclic: a

b

c

d

a

b

c

d

1

3 2

1

With Edge Labels: a

b

c

d

e
1

3

2
0

Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 4



Trees are Graphs

• A graph is connected if there is a (possibly directed) path between
every pair of nodes.

• That is, if one node of the pair is reachable from the other.

• A DAG is a (rooted) tree iff connected, and every node but the root
has exactly one parent.

• A connected, acyclic, undirected graph is also called a free tree.
Free: we’re free to pick the root; e.g.,

a

b

c

d

e b

a d e

c

d

b c

a e

Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 5



Examples of Use

• Edge = Connecting road, with length.

Detroit Chicago
200

• Edge = Must be completed before; Node label = time to complete.

Eat
1 hr

Sleep
8 hrs

• Edge = Begat

Martin George

Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 6



More Examples

• Edge = some relationship

potstickers John Mary
eats loves

• Edge = next state might be (with probability)

hat the cat in bed
0.60.4 0.4 0.1

0.9

• Edge = next state in state machine, label is triggering input. (Start
at s. Being in state 4 means “there is a substring ‘001’ somewhere in
the input”.)

s 2 3 4
0 0 1

0

1

1

0,1

Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 7



Representation

• Often useful to number the nodes, and use the numbers in edges.

• Edge list representation: each node contains some kind of list (e.g.,
linked list or array) of its successors (and possibly predecessors).

a b

c

1: a

(2,3) ()

2: b

(3) (1)

3: c

() (1,2)

• Edge sets: Collection of all edges. For graph above:

{(1, 2), (1, 3), (2, 3)}

• Adjacency matrix: Represent connection with matrix entry:

1

2

3

1 2 3
















0 1 1
0 0 1
0 0 0

















Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 8



Traversing a Graph

• Many algorithms on graphs depend on traversing all or some nodes.

• Can’t quite use recursion because of cycles.

• Even in acyclic graphs, can get combinatorial explosions:

0

1

2

3

4

5

6

7

8

. . . 3N

Treat 0 as the root and do recursive traversal down the two edges
out of each node: Θ(2N) operations!

• So typically try to visit each node constant # of times (e.g., once).

Last modified: Sun Nov 15 17:53:45 2015 CS61B: Lecture #34 9


	CS61B Lecture #34
	Why Graphs?
	Some Terminology
	Some Pictures
	Trees are Graphs
	Examples of Use
	More Examples
	Representation
	Traversing a Graph

