CS61B Lecture \#34

Administrivia:

- Project due Tuesday night.
- Autograder running with preliminary test sets.

Today's Readings: Graph Structures: DSIJ, Chapter 12

Why Graphs?

- For expressing non-hierarchically related items
- Examples:
- Networks: pipelines, roads, assignment problems
- Representing processes: flow charts, Markov models
- Representing partial orderings: PERT charts, makefiles

Some Terminology

- A graph consists of
- A set of nodes (aka vertices)
- A set of edges: pairs of nodes.
- Nodes with an edge between are adjacent.
- Depending on problem, nodes or edges may have labels (or weights)
- Typically call node set $V=\left\{v_{0}, \ldots\right\}$, and edge set E.
- If the edges have an order (first, second), they are directed edges, and we have a directed graph (digraph), otherwise an undirected graph.
- Edges are incident to their nodes.
- Directed edges exit one node and enter the next.
- A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed).
- A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Directed Acyclic Graph-DAG.

Some Pictures

With Edge Labels:

Trees are Graphs

- A graph is connected if there is a (possibly directed) path between every pair of nodes.
- That is, if one node of the pair is reachable from the other.
- A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.
- A connected, acyclic, undirected graph is also called a free tree. Free: we're free to pick the root; e.g.,

(a)

(a)
(e)

Examples of Use

- Edge $=$ Connecting road, with length .

- Edge $=$ Must be completed before: Node label $=$ time to complete.

- Edge $=$ Begat

More Examples

- Edge = some relationship

- Edge $=$ next state might be (with probability)

- Edge $=$ next state in state machine, label is triggering input. (Start at s. Being in state 4 means "there is a substring '001' somewhere in the input".)

Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes.
- Can't quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:

Treat 0 as the root and do recursive traversal down the two edges out of each node: $\Theta\left(2^{N}\right)$ operations!

- So typically try to visit each node constant \# of times (e.g., once).

