
Public-Service Announcement

Interested in Education? Robotics? STEM outreach?
Pioneers in Engineering (PiE) is a student group that provides fun

STEM experiences to underrepresented students in the Bay Area. We
develop robotic systems and hands-on educational programs that high
school students use in a year-long Mentoring Program and an 8-week
Robotics Competition hosted by PiE.
If you would like to learn more about what we do, e-mail us at re-

cruiting@pioneers.berkeley.edu, and join us for one of our infosessions
on 9/8 (HP Auditorium) and 9/10 (2060 VLSB) @7PM!

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 1

CS61B Lecture #3

• Reading: Please read Chapter 4 of the reader A Java Reference for
Wednesday (on Values, Types, and Containers) and Chapter 3 of the
textbook.

• Labs: We are forgiving during the first week or so, but try to get
your lab1 submitted properly. DBC: Let us know if you can’t get
something to work!

• Homework: Please see Homeworks #0 (optional) and #1 on the home-
work/lab page.

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 2

More Iteration: Sort an Array

Problem. Print out the command-line arguments in order:

% java sort the quick brown fox jumped over the lazy dog

brown dog fox jumped lazy over quick the the

Plan.

public class Sort {

/** Sort and print WORDS lexicographically. */

public static void main(String[] words) {

sort(words, 0, words.length-1);

print(words);

}

/** Sort items A[L..U], with all others unchanged. */

static void sort(String[] A, int L, int U) { /* "TOMORROW" */ }

/** Print A on one line, separated by blanks. */

static void print(String[] A) { /* "TOMORROW" */ }

}

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 3

How do We Know If It Works?

• Unit testing refers to the testing of individual units (methods, classes)
within a program, rather than the whole program.

• In this class, we mainly use the JUnit tool for unit testing.

• Example: AGTestYear.java in lab #1.

• Integration testing refers to the testing of entire (integrated) set
of modules—the whole program.

• In this course, we’ll look at various ways to run the program against
prepared inputs and checking the output.

• Regression testing refers to testing with the specific goal of check-
ing that fixes, enhancements, or other changes have not introduced
faults (regressions).

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 4



Test-Driven Development

• Idea: write tests first.

• Implement unit at a time, run tests, fix and refactor until it works.

• We’re not really going to push it in this course, but it is useful and
has quite a following.

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 5

Testing sort

• This is pretty easy: just give a bunch of arrays to sort and then
make sure they each get sorted properly.

• Have to make sure we cover the necessary cases:

– Corner cases. E.g., empty array, one-element, all elements the
same.

– Representative “middle” cases. E.g., elements reversed, elements
in order, one pair of elements reversed, . . . .

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 6

Simple JUnit

• The JUnit package provides some handy tools for unit testing.

• The Java annotation @Test on a method tells the JUnit machinery
to call that method.

• (An annotation in Java provides information about a method, class,
etc., that can be examined within Java itself.)

• A collection of methods with names beginning with assert then allow
your test cases to check conditions and report failures.

• [See example.]

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 7

Selection Sort

/** Sort items A[L..U], with all others unchanged. */

static void sort (String[] A, int L, int U) {

if (L < U) {

int k = indexOfLargest (A, L, U);

String tmp = A[k]; A[k] = A[U]; A[U] = tmp;

sort (A, L, U-1); // Sort items L to U-1 of A

}

}

Iterative version:

while (L < U) {

int k = indexOfLargest (A, L, U);

String tmp = A[k]; A[k] = A[U]; A[U] = tmp;

U -= 1;

}

And we’re done! Well, OK, not quite.

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 8



Really Find Largest

/** Value k, I0<=k<=I1, such that V[k] is largest element among

* V[I0], ... V[I1]. Requires I0<=I1. */

static int indexOfLargest (String[] V, int i0, int i1) {

if (i0 >= i1)

return i1;

else /* if (i0 < i1) */ {

int k = indexOfLargest (V, i0+1, i1);

return (V[i0].compareTo (V[k]) > 0) ? i0 : k;

// or if (V[i0].compareTo (V[k]) > 0) return i0; else return k;

}

}

Iterative:

int i, k;

k = i1; // Deepest iteration

for (i = i1-1; i >= i0; i -= 1)

k = (V[i].compareTo (V[k]) > 0) ? i : k;

return k;

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 9

Finally, Printing

/** Print A on one line, separated by blanks. */

static void print (String[] A) {

for (int i = 0; i < A.length; i += 1)

System.out.print (A[i] + " ");

System.out.println ();

}

/* J2SE 5 introduced a new syntax for the for
* loop here: */

for (String s : A)

System.out.print (s + " ");

/* Use it if you like, but let’s not stress over it yet! */

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 10

Another Problem

Given an array of integers, A, move its last element, A[A.length-1], to
just after nearest previous item that is ≤ to it (shoving other elements
to the right). For example, if A starts out as

{ 1, 9, 4, 3, 0, 12, 11, 9, 15, 22, 12 }

then it ends up as

{ 1, 9, 4, 3, 0, 12, 11, 9, 12, 15, 22 }

If there is no such previous item, move A[A.length-1] to the beginning
of A (i.e., to A[0]). So

{ 1, 9, 4, 3, 0, 12, 11, 9, 15, 22, -2 }

would become

{ -2, 1, 9, 4, 3, 0, 12, 11, 9, 15, 22 }

(Preliminary question: How can I state this without making this last
case special?)

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 11

Your turn

public class Shove {

/** Move A[A.length-1] so that it is just after the nearest

* previous item that is <= A[A.length-1], or to A[0] if

* there isn’t such an item. Move all succeeding items

* to the right (i.e., up one index). */

// BETTER DESCRIPTION?

static void moveOver(int[] A) {

// FILL IN

}

}

Last modified: Wed Sep 9 12:32:07 2015 CS61B: Lecture #3 12


	Public-Service Announcement
	CS61B Lecture #3
	More Iteration: Sort an Array
	How do We Know If It Works?
	Test-Driven Development
	Testing sort
	Simple JUnit
	Selection Sort
	Really Find Largest
	Finally, Printing
	Another Problem
	Your turn

