
CS61B Lectures #28

Today:

• Lower bounds on sorting by comparison

• Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.
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Better than N lg N?

• Can prove that if all you can do to keys is compare them then sorting
must take Ω(N lg N).

• Basic idea: there are N ! possible ways the input data could be
scrambled.

• Therefore, your program must be prepared to do N ! different com-
binations of move operations.

• Therefore, there must be N ! possible combinations of outcomes of
all the if tests in your program (we’re assuming that comparisons are
2-way).
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Height ∝ Sorting time
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Necessary Choices

• Since each if test goes two ways, number of possible different out-
comes for k if tests is 2k.

• Thus, need enough tests so that 2k > N !, which means k ∈ Ω(lg N !).

• Using Stirling’s approximation,
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this tells us that
k ∈ Ω(N lg N).
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Beyond Comparison: Distribution

• But suppose can do more than compare keys?

• For example, how can we sort a set of N integer keys whose values
range from 0 to kN , for some small constant k?

• One technique: put the integers into N buckets, with an integer p
going to bucket p/k.

• At most k keys per bucket, so catenate and use insertion sort, which
will now be fast.

• E.g., k = 2, N = 10 :

Start:

14 3 10 13 4 2 19 17 0 9

In buckets:

| 0 | 3 2 | 4 | | 9 | 10 | 13 | 14 | 17 | 19 |

• Now insertion sort is fast. For fixed k, Θ(N).
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Distribution Counting

• Another technique: count the number of items < 1, < 2, etc.

• If Mp =#items with value < p, then in sorted order, the jth item
with value p must be #Mp + j.

• Gives linear-time algorithm.

Last modified: Wed Nov 5 02:34:12 2014 CS61B: Lectures #26–27 5



Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0
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7 7 9
16

9 9

• “Counts” line gives # occurrences of each key.

• “Running sum” gives cumulative count of keys ≤ each value. . .

• . . . which tells us where to put each key:

• The first instance of key k goes into slot m, where m is the number
of key instances that are < k.
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Radix Sort

Idea: Sort keys one character at a time.

• Can use distribution counting for each digit.

• Can work either right to left (LSD radix sort) or left to right (MSD
radix sort)

• LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

be

‘⊔’

cad

‘d’

can
con

‘n’

bet
let
bat
cat
set

‘t’

Pass 1
(by char #2)

be, cad, con, can, set, cat, bat, let, bet

bat
cat
can
cad

‘a’

bet
let
set
be

‘e’

con

‘o’

Pass 2
(by char #1)

cad, can, cat, bat, be, set, let, bet, con

bet
be
bat

‘b’

con
cat
can
cad

‘c’

let

‘l’

set

‘s’

Pass 3
(by char #0)

bat, be, bet, cad, can, cat, con, let, set
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MSD Radix Sort

• A bit more complicated: must keep lists from each step separate

• But, can stop processing 1-element lists

A posn

⋆ set, cat, cad, con, bat, can, be, let, bet 0
⋆ bat, be, bet / cat, cad, con, can / let / set 1
bat / ⋆ be, bet / cat, cad, con, can / let / set 2
bat / be / bet / ⋆ cat, cad, con, can / let / set 1
bat / be / bet / ⋆ cat, cad, can / con / let / set 2
bat / be / bet / cad / can / cat / con / let / set
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Performance of Radix Sort

• Radix sort takes Θ(B) time where B is total size of the key data .

• Have measured other sorts as function of #records.

• How to compare?

• To have N different records, must have keys at least Θ(lg N) long
[why?]

• Furthermore, comparison actually takes time Θ(K) where K is size
of key in worst case [why?]

• So N lg N comparisons really means N(lg N)2 operations.

• While radix sort takes B = N lg N time.

• On the other hand, must work to get good constant factors with
radix sort.

Last modified: Wed Nov 5 02:34:12 2014 CS61B: Lectures #26–27 9



And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

• Need balance to really use for sorting [next topic].

• Given balance, same performance as heapsort: N insertions in time
lg N each, plus Θ(N) to traverse, gives

Θ(N + N lg N) = Θ(N lg N)
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Summary

• Insertion sort: Θ(Nk) comparisons and moves, where k is maximum
amount data is displaced from final position.

– Good for small datasets or almost ordered data sets.

• Quicksort: Θ(N lg N) with good constant factor if data is not patho-
logical. Worst case O(N 2).

• Merge sort: Θ(N lg N) guaranteed. Good for external sorting.

• Heapsort, treesort with guaranteed balance: Θ(N lg N) guaranteed.

• Radix sort, distribution sort: Θ(B) (number of bytes). Also good for
external sorting.
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