Public Service Announcement

Monday, 2 November 2015, 7-9PM at Andersen Auditorium:

"Join us to explore some of the most groundbreaking com-
panies working with artificial intelligence and machine learning,
from autonomous cars to virtual reality. Network with profes-
sionals from companies like Microsoft, Oculus VR, Uber and morel!
Come to Smart Everything and get a glimpse of the future, to-
day.”

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 1

CS61B Lectures #27

Today:
e Shell's sort, Heap, Merge sorts
e Quicksort

e Selection

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Last modified: Wed Oct 28 12:35:26 2015

CS61B: Lectures #27 2

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

e First sort subsequences of elements 2¢ — 1 apart:
- sort items #0, 28 — 1, 2(2" — 1), 3(2* — 1), ..., then
-sortitems #1, 1+2F -1, 1+2(28 - 1), 1+3(2¥-1), ..., then
-sortitems #2, 2+2F — 1, 2+2(2" - 1), 2+3(2* = 1), ..., then
- efc.
- sort items #2F —2 2028 — 1) — 1, 3(2F —1) -1, ...,
- Each time an item moves, can reduce #inversions by as much as

2k 41,

e Now sort subsequences of elements 2"~! — 1 apart:
- sort items #0, 2"=1 — 1, 2(2"1 — 1), 3(2"' —1), ..., then
-sortitems #1, 1 +281 — 1, 14221 —1), 14321 —1), ...

e End at plain insertion sort (2° = 1 apart), but with most inversions
gone.

e Sort is O(N'?) (take €S170 for why!).

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 3

Example of Shell's Sort

[15[14[13]12]11[10[9[8 [7]6[5[4[3]2]1]0]

[0[7]e]5]4]3]2]1]14]13[12]11[10]9[8]15]

[0[1]3]2]4]6]5]7[8]10]9]11]13]12]14]15]

[0[1]2]3]4][5]6]7[8]9]t0]11]12]13]14]15]
I: Inversions left.
C: Comparisons needed to sort subsequences.

Last modified: Wed Oct 28 12:35:26 2015

CS61B: Lectures #27 4

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.
e Really bad idea on a simple list or vector.
e But we've already seen it in action: use heap.
e Gives O(N lg N) algorithm (/N remove-first operations).

e Since we remove items from end of heap, we can use that area to
accumulate result:

original: [19] 0 [-1]7 [23] 2 [42]
heapified: [42]23[19]7 [0 [2 [-1]
(23] 7[19]-1]0] 2]
[19[7]2]-1]0] [23]42]
‘7‘0‘2‘—1‘ ‘19‘23‘42‘
[2]0]-1] [7]19]23]42]
‘O‘—l‘ ‘2‘7‘19‘23‘42‘

[0[2]7]19]23]42]

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 5

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge re-
sults.

e Already seen analysis: ©(N Ig N).
e Good for external sorting:

- First break data into small enough chunks to fit in memory and
sort.

- Then repeatedly merge into bigger and bigger sequences.

- Can merge K sequences of arbitrary size on secondary storage
using O(K) storage.

e For internal sorting, can use binomial comb to orchestrate:

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 6

Illustration of Internal Merge Sort

L:(9,15,5,3,0,6,10,-1, 2, 20, 8)

0 elements processed

10 0 ot~ (5)
5@(9,15) : -~ (9, 15)

Let-©)

10
10

1 element processed 2 elements processed 3 elements processed

10 : = (0, 6) 1:[1] = (2, 20)
: H (3,5,9,15) : - (3,5,9,15) 2
: : 3:

4 elements processed elements processed 11 elements processed

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 7

1 e+~ (-1,0,3,5,6,9,10, 15)

Quicksort: Speed through Probability

Idea:

e Partition data into pieces: everything > a pivot value at the high
end of the sequence to be sorted, and everything < on the low end.

e Repeat recursively on the high and low pieces.

e For speed, stop when pieces are "small enough” and do insertion sort
on the whole thing.

e Reason: insertion sort has low constant factors. By design, no item
will move out of its will move out of its piece [why?], so when pieces
are small, #inversions is, too.

e Have to choose pivot well. E.g.. median of first, last and middle
items of sequence.

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 8

Example of Quicksort

e In this example, we continue until pieces are size < 4.

e Pivots for next step are starred. Arrange to move pivot to dividing
line each time.

o Last step is insertion sort.

[16]10]13]18]-4[-7[12]-5[19]15] 0 [22]29]34[-1*|
[-4]-5]-7][-1]|[18]13]12]10]19[15] O [22]29]34]16*]
[-4]-5]-7][-1][15]13]12*[10] 0 |[16][19*[22]29]34] 18]
[-4]-5]-7][-1][10] 0 |[12][15]13]|[16 || 18][19][29]34]22]

e Now everything is "close to" right, so just do insertion sort:

[7]5]-4[-1]0 [10]12[13] 15|16 18] 19]22]29]34]

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 9

Performance of Quicksort

e Probabalistic time:
- If choice of pivots good, divide data in two each time: ©(Nlg N)
with a good constant factor relative to merge or heap sort.
- If choice of pivots bad, most items on one side each time: O(N?).
-Q(NIgN) in best case, so insertion sort better for nearly or-
dered input sets.

e Interesting point: randomly shuffling the data before sorting makes
Q(N?) time very unlikely!

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 10

Quick Selection

The Selection Problem: for given k, find kth smallest element in data.

e Obvious method: sort, select element #k, time O(N g N).
e If i < some constant, can easily do in ©O(N) time:

- Go through array, keep smallest & items.
e Get probably ©(N) time for all k by adapting quicksort:

- Partition around some pivot, p, as in quicksort, arrange that pivot
ends up at dividing line.

- Suppose that in the result, pivot is at index m, all elements <
pivot have indicies < m.

- If m =k, you're done: p is answer.
- If m > k, recursively select 1T from left half of sequence.

-If m < k, recursively select (k — m — 1)1'h from right half of
sequence.

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 11

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:
[51]60]21[-4[37] 4 [49]10]40%59] 0 [13] 2 [39]11[46] 31]
0

Looking for #10 to left of pivot 40:
[13]31]21[-4[37[4*[11]10[39] 2 | 0 |[40][59]51[49]46]60]
0

Looking for #6 to right of pivot 4:
[-4]0[2][4]|[37]13]11[10[39]21[31*| 40][59]51]49]4660]
4

Looking for #1 to right of pivot 31:

[-4]0]2][4][21]13]11]10][31][39]37][40][59]51[49]46]60]
9

Just two elements; just sort and return #1:

[-4]0 [2][4]|[21][13]11]10]|31][37[39][40][59]51[49]46]60]
9

Result: 39

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 12

Selection Performance

e For this algorithm, if m roughly in middle each time, cost is

1, if N =1,
C(N) = N + C(N/2), otherwise.
= N+N/2+... +1

= 2N — 1€ O(N)

e But in worst case, get ©(N?), as for quicksort.

e By another, non-obvious algorithm, can get ©(N) worst-case time
for all k (take CS170).

Last modified: Wed Oct 28 12:35:26 2015 CS61B: Lectures #27 13

	Public Service Announcement
	CS61B Lectures #27
	Shell's sort
	Example of Shell's Sort
	Sorting by Selection: Heapsort
	Merge Sorting
	Illustration of Internal Merge Sort
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance

