CS61B Lecture #26

Today:

- Sorting algorithms: why?
- Insertion Sort.
- Inversions

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Purposes of Sorting

- Sorting supports searching
- Binary search standard example
- Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Some Definitions

- A sort is a *permutation* (re-arrangement) of a sequence of elements that brings them into order, according to some *total order*. A total order, \leq , is:
 - Total: $x \leq y$ or $y \leq x$ for all x, y.
 - Reflexive: $x \preceq x$;
 - Antisymmetric: $x \leq y$ and $y \leq x$ iff x = y.
 - Transitive: $x \leq y$ and $y \leq z$ implies $x \leq z$.
- However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called *stable*.

Classifications

- Internal sorts keep all data in primary memory
- External sorts process large amounts of data in batches, keeping what won't fit in secondary storage (in the old days, tapes).
- Comparison-based sorting assumes only thing we know about keys is order
- Radix sorting uses more information about key structure.
- Insertion sorting works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- Selection sorting works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.

Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, *inserting* into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.
- \bullet So gives us ${\cal O}(N^2)$ algorithm. Can we say more?

Inversions

- \bullet Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:

```
for (int i = 1; i < A.length; i += 1) {
    int j;
    Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
        if (A[j].compareTo (x) <= 0) /* (1) */
            break;
        A[j+1] = A[j];
    }
    A[j+1] = x;
}</pre>
```

- ullet #times (1) executes pprox how far ${f x}$ must move.
- \bullet If all items within K of proper places, then takes O(KN) operations.
- Thus good for any amount of *nearly sorted* data.
- One measure of unsortedness: # of inversions: pairs that are out of order (= 0 when sorted, N(N-1)/2 when reversed).
- Each step of j decreases inversions by 1.

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^k 1$ apart:
 - sort items #0, $2^k 1$, $2(2^k 1)$, $3(2^k 1)$, ..., then
 - sort items #1, $1 + 2^k 1$, $1 + 2(2^k 1)$, $1 + 3(2^k 1)$, ..., then
 - sort items #2, $2 + 2^k 1$, $2 + 2(2^k 1)$, $2 + 3(2^k 1)$, ..., then
 - etc.
 - sort items # $2^k 2$, $2(2^k 1) 1$, $3(2^k 1) 1$, ...,
 - Each time an item moves, can reduce #inversions by as much as $2^k + 1$.
- Now sort subsequences of elements $2^{k-1} 1$ apart:
 - sort items #0, $2^{k-1} 1$, $2(2^{k-1} 1)$, $3(2^{k-1} 1)$, ..., then
 - sort items #1, $1 + 2^{k-1} 1$, $1 + 2(2^{k-1} 1)$, $1 + 3(2^{k-1} 1)$, ..., -:
- End at plain insertion sort ($2^0 = 1$ apart), but with most inversions gone.
- \bullet Sort is $\Theta(N^{1.5})$ (take CS170 for why!).

Last modified: Sun Nov 2 17:16:53 2014

CS61B: Lecture #26 7