
CS61B Lecture #18

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 1

Topics

• Views

• Generic Implementation

• Array vs. linked: tradeoffs

• Sentinels

• Specialized sequences: stacks, queues, deques

• Circular buffering

• Recursion and stacks

• Adapters

Readings: Data Structures, Chapter 2, 3 (for today), and 4 (Friday).

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 2

Views

New Concept: A view is an alternative presentation of (interface to)
an existing object.

• For example, the sublist method is supposed to yield a “view of”
part of an existing list:

L: at ax ban bat cat

︸ ︷︷ ︸

SL:

List<String> L = new ArrayList<String>();

L.add("at"); L.add("ax"); ...

List<String> SL = L.sublist(1,4);

• Example: after L.set(2, "bag"), value of SL.get(1) is "bag", and
after SL.set(1,"bad"), value of L.get(2) is "bad".

• Example: after SL.clear(), L will contain only "at" and "cat".

• Small challenge: “How do they do that?!”

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 3

Maps

• A Map is a kind of “modifiable function:”

package java.util;

public interface Map<Key,Value> {

Value get(Object key); // Value at KEY.

Object put(Key key, Value value); // Set get(KEY) -> VALUE

...

}

--

Map<String,String> f = new TreeMap<String,String>();

f.put("Paul", "George"); f.put("George", "Martin");

f.put("Dana", "John");

// Now f.get("Paul").equals("George")

// f.get("Dana").equals("John")

// f.get("Tom") == null

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 4

Map Views

public interface Map<Key,Value> { // Continuation

/* Views of Maps */

/** The set of all keys. */

Set<Key> keySet();

/** The multiset of all values that can be returned by get.

* (A multiset is a collection that may have duplicates). */

Collection<Value> values();

/** The set of all(key, value) pairs */

Set<Map.Entry<Key,Value>> entrySet();

}

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 5

View Examples

Using example from a previous slide:

Map<String,String> f = new TreeMap<String,String>();

f.put("Paul", "George"); f.put("George", "Martin");

f.put("Dana", "John");

we can take various views of f:

for (Iterator<String> i = f.keySet().iterator(); i.hasNext();)

i.next() ===> Dana, George, Paul

// or, more succinctly:
for (String name : f.keySet())

name ===> Dana, George, Paul

for (String parent : f.values())

parent ===> John, Martin, George

for (Map.Entry<String,String> pair : f.entrySet())

pair ===> (Dana,John), (George,Martin), (Paul,George)

f.keySet().remove("Dana"); // Now f.get("Dana") == null

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 6

Simple Banking I: Accounts

Problem: Want a simple banking system. Can look up accounts by name
or number, deposit or withdraw, print.

Account Structure

class Account {

Account(String name, String number, int init) {

this.name = name; this.number = number;

this.balance = init;

}

/** Account-holder’s name */

final String name;

/** Account number */

final String number;

/** Current balance */

int balance;

/** Print THIS on STR in some useful format. */

void print(PrintWriter str) { ... }

}

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 7

Simple Banking II: Banks

class Bank {

/* These variables maintain mappings of String -> Account. They keep

* the set of keys (Strings) in "compareTo" order, and the set of

* values (Accounts) is ordered according to the corresponding keys. */

SortedMap<String,Account> accounts = new TreeMap<String,Account>();

SortedMap<String,Account> names = new TreeMap<String,Account>();

void openAccount(String name, int initBalance) {

Account acc =

new Account(name, chooseNumber(), initBalance);

accounts.put(acc.number, acc);

names.put(name, acc);

}

void deposit(String number, int amount) {

Account acc = accounts.get(number);

if (acc == null) ERROR(...);

acc.balance += amount;

}

// Likewise for withdraw.

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 8

Banks (continued): Iterating

Printing out Account Data

/** Print out all accounts sorted by number on STR. */

void printByAccount(PrintStream str) {

// accounts.values() is the set of mapped-to values. Its

// iterator produces elements in order of the corresponding keys.

for (Account account : accounts.values())

account.print(str);

}

/** Print out all bank acconts sorted by name on STR. */

void printByName(PrintStream str) {

for (Account account : names.values())

account.print(str);

}

A Design Question: What would be an appropriate representation for
keeping a record of all transactions (deposits and withdrawals) against
each account?

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 9

Partial Implementations

• Besides interfaces (like List) and concrete types (like LinkedList),
Java library provides abstract classes such as AbstractList.

• Idea is to take advantage of the fact that operations are related to
each other.

• Example: once you know how to do get(k) and size() for an imple-
mentation of List, you can implement all the other methods needed
for a read-only list (and its iterators).

• Now throw in add(k,x) and you have all you need for the additional
operations of a growable list.

• Add set(k,x) and remove(k) and you can implement everything else.

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 10

Example: The java.util.AbstractList helper class

public abstract class AbstractList<Item> implements List<Item> {

/** Inherited from List */

// public abstract int size();

// public abstract Item get(int k);

public boolean contains(Object x) {

for (int i = 0; i < size(); i += 1) {

if ((x == null && get(i) == null) ||

(x != null && x.equals(get(i))))

return true;

}

return false;

}

/* OPTIONAL: By default, throw exception; override to do more. */

void add(int k, Item x) {

throw new UnsupportedOperationException();

}

Likewise for remove, set

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 11

Example, continued: AListIterator

// Continuing abstract class AbstractList<Item>:

public Iterator<Item> iterator() { return listIterator(); }

public ListIterator<Item> listIterator() { return new AListIterator(this); }

private static class AListIterator implements ListIterator<Item> {

AbstractList<Item> myList;

AListIterator(AbstractList<Item> L) { myList = L; }

/** Current position in our list. */

int where = 0;

public boolean hasNext() { return where < myList.size(); }

public Item next() { where += 1; return myList.get(where-1); }

public void add(Item x) { myList.add(where, x); where += 1; }

... previous, remove, set, etc.
}

...

}

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 12

Example: Using AbstractList

Problem: Want to create a reversed view of an existing List (same
elements in reverse order).

public class ReverseList<Item> extends AbstractList<Item> {

private final List<Item> L;

public ReverseList(List<Item> L) { this.L = L; }

public int size() { return L.size(); }

public Item get(int k) { return L.get(L.size()-k-1); }

public void add(int k, Item x)

{ L.add(L.size()-k, x); }

public Item set(int k, Item x)

{ return L.set(L.size()-k-1, x); }

public Item remove(int k)

{ return L.remove(L.size() - k - 1); }

}

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 13

Aside: Another way to do AListIterator

It’s also possible to make the nested class non-static:

public Iterator<Item> iterator() { return listIterator(); }

public ListIterator<Item> listIterator() { return this.new AListIterator(); }

private class AListIterator implements ListIterator<Item> {

/** Current position in our list. */

int where = 0;

public boolean hasNext() { return where < AbstractList.this.size(); }

public Item next() { where += 1; return AbstractList.this.get(where-1); }

public void add(Item x) { AbstractList.this.add(where, x); where += 1; }

... previous, remove, set, etc.
}

...

}

• Here, AbstractList.this means “the AbstractList I am attached
to” and X.new AListIterator means “create a new AListIterator

that is attached to X .”

• In this case you can abbreviate this.new as new and can leave off
the AbstractList.this parts, since meaning is unambiguous.

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 14

Getting a View: Sublists

Problem: L.sublist(start, end) is a full-blown List that gives a
view of part of an existing list. Changes in one must affect the other.
How? Here’s part of AbstractList:

List<Item> sublist(int start, int end) {

return new this.Sublist(start, end);

}

private class Sublist extends AbstractList<Item> {

// NOTE: Error checks not shown

private int start, end;

Sublist(int start, int end) { obvious }

public int size() { return end-start; }

public Item get(int k)

{ return AbstractList.this.get(start+k); }

public void add(int k, Item x) {

{ AbstractList.this.add(start+k, x); end += 1; }

...

}

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 15

What Does a Sublist Look Like?

• Consider SL = L.sublist(3, 5);

L:
List

object

SL: AbstractList.this

start: 3

end: 5

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 16

Arrays and Links

• Two main ways to represent a sequence: array and linked list

• In Java Library: ArrayList and Vector vs. LinkedList.

• Array:

– Advantages: compact, fast (Θ(1)) random access (indexing).

– Disadvantages: insertion, deletion can be slow (Θ(N))

• Linked list:

– Advantages: insertion, deletion fast once position found.

– Disadvantages: space (link overhead), random access slow.

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 17

Implementing with Arrays

• Biggest problem using arrays is insertion/deletion in the middle of a
list (must shove things over).

• Adding/deleting from ends can be made fast:

– Double array size to grow; amortized cost constant (Lecture #15).

– Growth at one end really easy; classical stack implementation:

S.push("X");

S.push("Y");

S.push("Z");
S: A:

size: 3
X Y Z

add here

– To allow growth at either end, use circular buffering:

F I HG

add here

firstlast
– Random access still fast.

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 18

Linking

• Essentials of linking should now be familiar

• Used in Java LinkedList. One possible representation for linked
list and an iterator object over it:

β

α β

α

sentinel
axolotl kludge xerophyte

L:
3

I: LinkedList.this

lastReturned

here

1 nextIndex

L = new LinkedList<String>(); I = L.listIterator();

L.add("axolotl"); I.next();

L.add("kludge");

L.add("xerophyte");

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 19

Clever trick: Sentinels

• A sentinel is a dummy object containing no useful data except links.

• Used to eliminate special cases and to provide a fixed object to
point to in order to access a data structure.

• Avoids special cases (‘if’ statements) by ensuring that the first and
last item of a list always have (non-null) nodes—possibly sentinels—
before and after them:

• // To delete list node at p: // To add new node N before p:

p.next.prev = p.prev; N.prev = p.prev; N.next = p;

p.prev.next = p.next; p.prev.next = N;

p.prev = N;

p:Initially · · · :N

p: · · · p: · · ·

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 20

Specialization

• Traditional special cases of general list:

– Stack: Add and delete from one end (LIFO).

– Queue: Add at end, delete from front (FIFO).

– Dequeue: Add or delete at either end.

• All of these easily representable by either array (with circular buffer-
ing for queue or deque) or linked list.

• Java has the List types, which can act like any of these (although
with non-traditional names for some of the operations).

• Also has java.util.Stack, a subtype of List, which gives tradi-
tional names (“push”, “pop”) to its operations. There is, however, no
“stack” interface.

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 21

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 10Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 1011Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 101112Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 101112

13

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 101112

13

14

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 101112

13

14

15

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 101112

13

14

15 16

Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Stacks and Recursion

• Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

– Calls become “push current variables and parameters, set param-
eters to new values, and loop.”

– Return becomes “pop to restore variables and parameters.”

findExit(start):

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start:

if legalPlace(x)

findExit(x)

1 2

3

4

5

6

7

8 9 101112

13

14

15 16 17
Call: findExit(0)
Exit: 16

findExit(start):

S = new empty stack;

push start on S;

while S not empty:

pop S into start;

if isExit(start)

FOUND

else if (! isCrumb(start))

leave crumb at start;

for each square, x,

adjacent to start (in reverse):

if legalPlace(x)

push x on S

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 22

Design Choices: Extension, Delegation, Adaptation

• The standard java.util.Stack type extends Vector:

class Stack<Item> extends Vector<Item> { void push(Item x) { add(x); } ... }

• Could instead have delegated to a field:

class ArrayStack<Item> {

private ArrayList<Item> repl = new ArrayList<Item>();

void push(Item x) { repl.add(x); } ...

}

• Or, could generalize, and define an adapter: a class used to make
objects of one kind behave as another:

public class StackAdapter<Item> {

private List repl;

/** A stack that uses REPL for its storage. */

public StackAdapter(List<Item> repl) { this.repl = repl; }

public void push(Item x) { repl.add(x); } ...

}

class ArrayStack<Item> extends StackAdapter<Item> {

ArrayStack() { super(new ArrayList<Item>()); }

}

Last modified: Wed Oct 7 12:38:39 2015 CS61B: Lecture #17 23

	CS61B Lecture #18
	Topics
	Views
	Maps
	Map Views
	View Examples
	Simple Banking I: Accounts
	Simple Banking II: Banks
	Banks (continued): Iterating
	Partial Implementations
	Example: The java.util.AbstractList helper class
	Example, continued: AListIterator
	Example: Using AbstractList
	Aside: Another way to do AListIterator
	Getting a View: Sublists
	What Does a Sublist Look Like?
	Arrays and Links
	Implementing with Arrays
	Linking
	Clever trick: Sentinels
	Specialization
	Stacks and Recursion
	Design Choices: Extension, Delegation, Adaptation

