
Administrative:

• Test #1 Tuesday night.

– Sections 11-13 go to 10 Evans.

– Sections 14-20 go to 155 Dwinelle.

– Sections 21-26 go to 2050 VLSB.

– Others(?) go to 155 Dwinelle.

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 1

CS61B Lecture #17

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 2

Topics

• Overview of standard Java Collections classes.

– Iterators, ListIterators

– Containers and maps in the abstract

• Amortized analysis of implementing lists with arrays:

Readings: Data Structures, Chapter 2, 3 (for today), and 4 (Friday).

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 3

Data Types in the Abstract

• Most of the time, should not worry about implementation of data
structures, search, etc.

• What they do for us—their specification—is important.

• Java has several standard types (in java.util) to represent collec-
tions of objects

– Six interfaces:

∗ Collection: General collections of items.

∗ List: Indexed sequences with duplication

∗ Set, SortedSet: Collections without duplication

∗ Map, SortedMap: Dictionaries (key 7→ value)

– Concrete classes that provide actual instances: LinkedList, ArrayList,
HashSet, TreeSet.

– To make change easier, purists would use the concrete types only
for new, interfaces for parameter types, local variables.

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 4



Collection Structures in java.util

Collection

List Set

SortedSet

LinkedList ArrayList Vector HashSet TreeSet

StackMap

SortedMap

HashMap WeakHashMap TreeMap

Key:

interface

class

: extends
: implements

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 5

The Collection Interface

• Collection interface. Main functions promised:

– Membership tests: contains (∈), containsAll (⊆)

– Other queries: size, isEmpty

– Retrieval: iterator, toArray

– Optional modifiers: add, addAll, clear, remove, removeAll (set
difference), retainAll (intersect)

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 6

Side Trip about Library Design: Optional Operations

• Not all Collections need to be modifiable; often makes sense just
to get things from them.

• So some operations are optional (add, addAll, clear, remove, removeAll,
retainAll)

• The library developers decided to have all Collections implement
these, but allowed implementations to throw an exception:

UnsupportedOperationException

• An alternative design would have created separate interfaces:

interface Collection { contains, containsAll, size, iterator, ... }

interface Expandable extends Collection { add, addAll }

interface Shrinkable extends Collection { remove, removeAll, difference, ... }

interface ModifiableCollection

extends Collection, Expandable, Shrinkable { }

• You’d soon have lots of interfaces. Perhaps that’s why they didn’t
do it that way.

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 7

The List Interface

• Extends Collection

• Intended to represent indexed sequences (generalized arrays)

• Adds new methods to those of Collection:

– Membership tests: indexOf, lastIndexOf.

– Retrieval: get(i), listIterator(), sublist(B,E).

– Modifiers: add and addAll with additional index to say where to
add. Likewise for removal operations. set operation to go with
get.

• Type ListIterator<Item> extends Iterator<Item>:

– Adds previous and hasPrevious.

– add, remove, and set allow one to iterate through a list, inserting,
removing, or changing as you go.

– Important Question: What advantage is there to saying List L

rather than LinkedList L or ArrayList L?

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 8



Implementing Lists (I): ArrayLists

• The main concrete types in Java library for interface List are
ArrayList and LinkedList:

• As you might expect, an ArrayList, A, uses an array to hold data.
For example, a list containing the three items 1, 4, and 9 might be
represented like this:

A:
data:

3count:

1 4 9

• After adding four more items to A, its data array will be full, and
the value of data will have to be replaced with a pointer to a new,
bigger array that starts with a copy of its previous values.

• Question: For best performance, how big should this new array be?

• If we increase the size by 1 each time it gets full (or by any con-
stant value), the cost of N additions will scale as Θ(N 2), which
makes ArrayList look much worse than LinkedList (which uses an
IntList-like implementation.)

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 9

Amortization: Expanding Vectors

• When using array for expanding sequence, best to double the size
of array to grow it. Here’s why.

• If array is size s, doubling its size and moving s elements to the new
array takes time proportional to 2s.

• In all cases, there is an additional Θ(1) cost for each addtion to
account for actually assigning the new value into the array.

• When you add up these costs for inserting a sequence of N items,
the total cost turns out to proportional to N , as if each addition
took constant time, even though some of the additions actually take
time proporational to N all by themselves!

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 10

Amortization: Expanding Vectors (II)

To Insert Resizing Cumulative Resizing Cost Array Size
Item # Cost Cost per Item After Insertions

0 0 0 0 1
1 2 2 1 2
2 4 6 2 4
3 0 6 1.5 4
4 8 14 2.8 8
5 0 14 2.33 8
... ... ... ... ...
7 0 14 1.75 8
8 16 30 3.33 16
... ... ... ... ...
15 0 30 1.88 16
... ... ... ... ...

2m + 1 to 2m+1 − 1 0 2m+2 − 2 ≈ 2 2m+1

2m+1 2m+2 2m+3 − 2 ≈ 4 2m+2

• If we spread out (amortize) the cost of resizing, we average at
most about 4 time units on each item: “amortized insertion time is 4
units.” Time to add N elements is Θ(N), not Θ(N 2).

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 11

Demonstrating Amortized Time: Potential Method

• To formalize the argument, associate a potential, Φi ≥ 0, to the ith

operation that keeps track of “saved up” time from cheap operations
that we can “spend” on later expensive ones. Start with Φ0 = 0.

• Now define the amortized cost of the ith operation as

ai = ci + Φi+1 − Φi,

where ci is the real cost of the operation.

• On cheap operations, we artificially set ai > ci and increase Φ (Φi+1 >

Φi).

• On expensive ones, we typically have ai ≪ ci and greatly decrease Φ
(but don’t let it go negative—may not be “overdrawn”).

• We try to do all this so that ai remains as we desired (e.g., O(1) for
expanding array), without allowing Φi < 0.

• Requires that we choose ai so that Φi always stays ahead of ci.

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 12



Application to Expanding Arrays

• When adding to our array, the cost, ci, of adding element #i when
the array already has space for it is 1 unit.

• The array does not initially have space when adding items 1, 2, 4, 8,
16,. . . —in other words at item 2n for all n ≥ 0. So,

– ci = 1 if i ≥ 0 and is not a power of 2; and

– ci = 2i + 1 when i is a power of 2 (copy i items, clear another i

items, and then add item #i).

• So on each operation #2n we’re going to need to have saved up at
least 2·2n = 2n+1 units of potential to cover the expense of expanding
the array, and we have this operation and the preceding 2n−1 − 1
operations in which to save up this much potential (everything since
the preceding doubling operation).

• To do so, just choose ai = 5 (actually, could let a0 = 1).

• Here’s what happens:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ci 1 3 5 1 9 1 1 1 17 1 1 1 1 1 1 1 33 1
ai 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Φi 0 4 6 6 10 6 10 14 18 6 10 14 18 22 26 30 34 6

Last modified: Mon Oct 5 12:20:42 2015 CS61B: Lecture #17 13


	CS61B Lecture #17
	Topics
	Data Types in the Abstract
	Collection Structures in java.util
	The Collection Interface
	Side Trip about Library Design: Optional Operations
	The List Interface
	Implementing Lists (I): ArrayLists
	Amortization: Expanding Vectors
	Amortization: Expanding Vectors (II)
	Demonstrating Amortized Time: Potential Method
	Application to Expanding Arrays

