CS61B Lecture #15

Announcements:

- Programming contest is Saturday! You can still sign up at http://inst.cs.berkeley.edu/~ctest/contest.
- Test #1 on Tuesday, 6 October 8-10PM. Room assignments to be announced. Mail us if you need an alternative time.
- Tips for studying:
 - Work through problems from HW, labs, discussion sections, guerrilla sections that you don't understand.
 - Work through old exams, without the answers.

Readings for Today: Data Structures (Into Java), Chapter 1; **Readings for next Topics:** Data Structures, Chapter 2-4

What Are the Questions?

• Cost is a principal concern throughout engineering:

"An engineer is someone who can do for a dime what any fool can do for a dollar."

- Cost can mean
 - Operational cost (for programs, time to run, space requirements).
 - Development costs: How much engineering time? When delivered?
 - Costs of failure: How robust? How safe?
- Is this program fast enough? Depends on:
 - For what purpose;
 - What input data.
- How much space (memory, disk space)?
 - Again depends on what input data.
- How will it scale, as input gets big?

Enlightening Example

Problem: Scan a text corpus (say 10^7 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.
- Solution 2 (Doug McIlroy): UNIX shell script:

```
tr -c -s '[:alpha:]' '[\n*]' < FILE | \
sort | \
uniq -c | \
sort -n -r -k 1,1 | \
sed 20q</pre>
```

- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 20MB in 1 minute.
 - I pick #2.
- In most cases, anything will do: Keep It Simple.

Last modified: Wed Sep 30 12:20:14 2015

Cost Measures (Time)

- Wall-clock or execution time
 - You can do this at home:

time java FindPrimes 1000

- Advantages: easy to measure, meaning is obvious.
- Appropriate where time is critical (real-time systems, e.g.).
- Disadvantages: applies only to specific data set, compiler, machine, etc.
- Number of times certain statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn't tell you actual time, still applies only to specific data sets.
- Symbolic execution times:
 - That is, formulas for execution times or statement counts in terms of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.

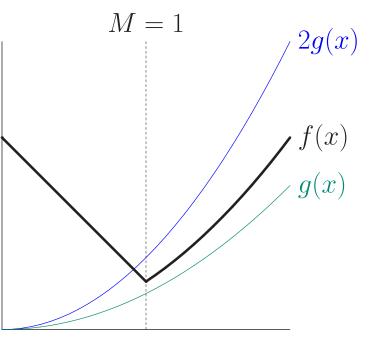
Asymptotic Cost

- Symbolic execution time lets us see shape of the cost function.
- Since we are approximating anyway, pointless to be precise about certain things:
 - Behavior on small inputs:
 - * Can always pre-calculate some results.
 - * Times for small inputs not usually important.
 - Constant factors (as in "off by factor of 2"):
 - * Just changing machines causes constant-factor change.
- How to abstract away from (i.e., ignore) these things?

Handy Tool: Order Notation

- Idea: Don't try to produce *specific* functions that specify size, but rather *families* of *similar* functions.
- Say something like "f is bounded by g if it is in g's family."
- For any function g(x), the functions 2g(x), 1000g(x), or for any K > 0, $K \cdot g(x)$, all have the same "shape". So put all of them into g's family.
- Any function h(x) such that $h(x) = K \cdot g(x)$ for x > M (for some constant M) has g's shape "except for small values." So put all of these in g's family.
- If we want upper limits, throw in all functions that are everywhere \leq some other member of g's family. Call this family O(g) or O(g(n)).
- Or, if we want lower limits, throw in all functions that are everywhere \geq some other member of g's family. Call this family $\Omega(g)$.
- Finally, define $\Theta(g) = O(g) \cap \Omega(g)$ —the set of functions bracketed by members of g's family.

• Goal: Specify bounding from above.

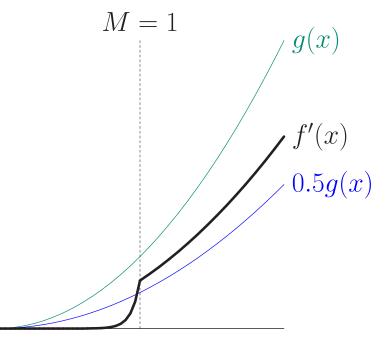


- Here, $f(x) \leq 2g(x)$ as long as x > 1,
- \bullet So f(x) is in g 's upper-bound family, written

 $f(x)\in O(g(x)),$

• ... even though f(x) > g(x) everywhere.

• Goal: Specify bounding from below:



- Here, $f'(x) \ge \frac{1}{2}g(x)$ as long as x > 1,
- So f'(x) is in g's lower-bound family, written $f'(x) \in \Omega(q(x)),$
- ... even though f(x) < g(x) everywhere.
- \bullet In fact, we also have $f'(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$ and so we can also write

$$f(x), f'(x) \in \Theta(g(x))$$

Last modified: Wed Sep 30 12:20:14 2015

CS61B: Lecture #15 8

Why It Matters

- Computer scientists often talk as if constant factors didn't matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.
- In reality they do, but we still have a point: at some point, constants get swamped.

n	$16 \lg n$	\sqrt{n}	n	$n \lg n$	n^2	n^3	2^n
2	16	1.4	2	2	4	8	4
4	32	2	4	8	16	64	16
8	48	2.8	8	24	64	512	256
16	64	4	16	64	256	4,096	65, 636
32	80	5.7	32	160	1024	32,768	4.2×10^9
64	96	8	64	384	4,096	262, 144	1.8×10^{19}
128	112	11	128	896	16,384	2.1×10^9	3.4×10^{38}
:	•	:	•	•	•		:
1,024	160	32	1,024	10,240	1.0×10^{6}	1.1×10^{9}	1.8×10^{308}
:	•	•	•	•	•	•	:
2^{20}	320	1024	1.0×10^{6}	2.1×10^7	1.1×10^{12}	1.2×10^{18}	$6.7 \times 10^{315,652}$

Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- \bullet N =problem size

Time (μ sec) for	Max N Possible in						
problem size N	1 second	1 hour	1 month	1 century			
$\lg N$	10^{300000}	$10^{1000000000}$	$10^{8 \cdot 10^{11}}$	$10^{9 \cdot 10^{14}}$			
N	10^{6}	$3.6 \cdot 10^{9}$	$2.7\cdot10^{12}$	$3.2 \cdot 10^{15}$			
$N \lg N$	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9 \cdot 10^{13}$			
N^2	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^{7}$			
N^3	100	1500	14000	150000			
2^N	20	32	41	51			

Using the Notation

- Can use this order notation for any kind of real-valued function.
- We will use them to describe cost functions. Example:

```
/** Find position of X in list L. Return -1 if not found */
int find (List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals (L.head)) return c;
    return -1;
}
```

- Choose representative operation: number of .equals tests.
- If N is length of L, then loop does at most N tests: worst-case time is N tests.
- In fact, total # of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is O(N), regardless of units used to measure.
- Use N > M provision (in defn. of $O(\cdot)$) to handle empty list.

Careful!

- It's also true that the worst-case time is $O(N^2)$, since $N \in O(N^2)$ also: Big-Oh bounds are loose.
- The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.
- Instead, we are just saying something about the function that maps N into the largest possible time required to process an array of length N.
- To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.
- But again, that still tells us nothing about *best-case* time, which happens when we find X at the beginning of the loop. Best-case time is $\Theta(1)$.

Effect of Nested Loops

• Nested loops often lead to polynomial bounds:

```
for (int i = 0; i < A.length; i += 1)
  for (int j = 0; j < A.length; j += 1)
        if (i != j && A[i] == A[j])
            return true;
return false;</pre>
```

- \bullet Clearly, time is $O(N^2),$ where $N={\tt A.length}.$ Worst-case time is $\Theta(N^2).$
- Loop is inefficient though:

```
for (int i = 0; i < A.length; i += 1)
    for (int j = i+1; j < A.length; j += 1)
        if (A[i] == A[j]) return true;
return false;</pre>
```

• Now worst-case time is proportional to

$$N - 1 + N - 2 + \ldots + 1 = N(N - 1)/2 \in \Theta(N^2)$$

(so asymptotic time unchanged by the constant factor).

Recursion and Recurrences: Fast Growth

• Silly example of recursion:

```
/** True iff X is a substring of S */
boolean occurs (String S, String X) {
    if (S.equals (X)) return true;
    if (S.length () <= X.length ()) return false;
    return
        occurs (S.substring (1), X) ||
        occurs (S.substring (0, S.length ()-1), X);
}</pre>
```

• In the worst case, both recursive calls happen.

• Define C(N) to be the worst-case cost of occurs(S,X) for S of length N, X of fixed size N_0 , measured in # of calls to occurs. Then

$$C(N) = \begin{cases} 1, & \text{if } N \le N_0, \\ 2C(N-1) + 1 & \text{if } N > N_0 \end{cases}$$

 \bullet So C(N) grows exponentially:

$$C(N) = 2C(N-1) + 1 = 2(2C(N-2) + 1) + 1 = \dots = \underbrace{2(\dots 2 \dots 1 + 1)}_{N-N_0} + \dots + 1$$
$$= 2^{N-N_0} + 2^{N-N_0-1} + 2^{N-N_0-2} + \dots + 1 = 2^{N-N_0+1} - 1 \in \Theta(2^N)$$

Binary Search: Slow Growth

```
/** True X iff is an element of S[L .. U]. Assumes
 * S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn (String X, String[] S, int L, int U) {
    if (L > U) return false;
    int M = (L+U)/2;
    int direct = X.compareTo (S[M]);
    if (direct < 0) return isIn (X, S, L, M-1);
    else if (direct > 0) return isIn (X, S, M+1, U);
    else return true;
}
```

- Here, worst-case time, C(D), (as measured by # of string comparisons), depends on size D = U L + 1.
- We eliminate S[M] from consideration each time and look at half the rest. Assume $D = 2^k 1$ for simplicity, so:

$$C(D) = \begin{cases} 0, & \text{if } D \leq 0, \\ 1 + C((D-1)/2), & \text{if } D > 0. \end{cases}$$
$$= \underbrace{1+1+\ldots+1}_{k} + 0$$
$$= k = \lceil \lg D \rceil \in \Theta(\lg D)$$

Another Typical Pattern: Merge Sort

```
List sort (List L) {

if (L.length () < 2) return L;

Split L into L0 and L1 of about equal size;

L0 = sort (L0); L1 = sort (L1);

return Merge of L0 and L1

}

Merge ("combine into a sin-

gle, ordered list") takes

time proportional to size of

its result.
```

• Assuming that size of L is $N = 2^k$, worst-case cost function, C(N), counting just merge time (\propto # items merged):

$$C(N) = \begin{cases} 1, & \text{if } N < 2; \\ 2C(N/2) + N, & \text{if } N \ge 2. \end{cases}$$

= $2(2C(N/4) + N/2) + N$
= $4C(N/4) + N + N$
= $8C(N/8) + N + N + N$
= $N \cdot 1 + \underbrace{N + N + \dots + N}_{k = \lg N}$
= $N + N \lg N \in \Theta(N \lg N)$

• In general, $\Theta(N \lg N)$ for arbitrary N (not just 2^k).