CS61B Lecture #14: Integers

Ann

- .

Integer Types and Literals

Announcement:		Туре	Bits	Signed?	Literals			
 Project #0 due Tuesday night. 		byte		Yes	Cast from int: (byte) 3			
 Programming contest SATURDAY! You can still sig 	n un at	short	16	Yes	None. Cast from int: (short) 4096			
https://inst.eecs.berkeley.edu/~ctest/conte	•				'a' // (char) 97 '\n' // newline ((char) 10)			
• Test #1 will be Tuesday, 6 October 2015, 8-10PM	C C	char	16	No	$'\t'$ // tab ((char) 8)			
					'\\' // backslash			
 Test #2 will be Tuesday, 10 November 2015, 7-9P 	<i>M</i> .				'A', '\101', '\u0041' // == (char) 65			
Today: Integer Types; Readings: A Java Referen First Java, Chapter 10.	ce, §6.3-4. Head	int	32	Yes	123 0100 // Octal for 64 0x3f, 0xffffffff // Hexadecimal 63, -1 (!)			
Readings for Upcoming Topics: Data Structures (Into Java), Chap-	long	64	Yes	123L, 01000L, 0x3fL 1234567891011L			
ter 1.		 Negative numerals are just negated (positive) literals. 						
		• "N bits" means that there are 2^N integers in the domain of the type:						
				- If signed, range of values is $-2^{N-1} \dots 2^{N-1} - 1$.				
		- If ur	nsigne	d, only no	on-negative numbers, and range is $02^N - 1.$			
Last modified: Mon Sep 28 12:10:19 2015	CS61B: Lecture #14 1	Last modified: Mon	Sep 28 12	:10:19 2015	C561B: Lecture #14 2			
Modular Arithmetic		Modular Arithmetic: Examples						
• Problem: How do we handle overflow, such as occur	s in 10000*10000*10000?	• (byte)	(64*	8) yields	0 , since $512 - 0 = 2 \times 2^8$.			
 Some languages throw an exception (Ada), some g sults (C, C++) 	• (byte) (64*2) and (byte) (127+1) yield -128, since $128 - (-128) = 1 \times 2^8$.							
 Java defines the result of any arithmetic operation or conversion on integer types to "wrap around"—modular arithmetic. That is, the "next number" after the largest in an integer type is the smallest (like "clock arithmetic"). 		• (byte) (101*99) yields 15, since $9999 - 15 = 39 \times \cdot 2^8$.						
		• (byte) (-30*13) yields 122, since $-390 - 122 = -2 \times 2^8$.						
		• (char) (-1) yields $2^{16} - 1$, since $-1 - (2^{16} - 1) = -1 \times 2^{16}$.						
• E.g., (byte) 128 == (byte) (127+1) == (byte)	-128							
• In general,								
 If the result of some arithmetic subexpression have type T, an n-bit integer type, then we compute the real (mathematical) value, and yield a number, x', that is in the range of the subscription of t	<i>x</i> ,							
equivalent to x modulo 2^n .								
– (That means that $x - x'$ is a multiple of 2^n .)								

Modular Arithmetic and Bits

- Why wrap around?
- Java's definition is the natural one for a machine that uses binary arithmetic.
- For example, consider bytes (8 bits):

Decimal	Binary		
101	1100101		
×99	1100011		
9999	100111 00001111		
- 9984	100111 00000000		
15	00001111		

- In general, bit n, counting from 0 at the right, corresponds to 2^n .
- The bits to the left of the vertical bars therefore represent multiples of $2^8=256.$
- So throwing them away is the same as arithmetic module 256.

```
Last modified: Mon Sep 28 12:10:19 2015
```

```
CS61B: Lecture #14 5
```

Conversion

- In general Java will silently convert from one type to another if this makes sense and no information is lost from value.
- Otherwise, cast explicitly, as in (byte) x.
- Hence, given

byte aByte; char aChar; short aShort; int anInt; long aLong;

```
// OK:
```

aShort = aByte; anInt = aByte; anInt = aShort; anInt = aChar; aLong = anInt;

// Not OK, might lose information: anInt = aLong; aByte = anInt; aChar = anInt; aShort = anInt; aShort = aChar; aChar = aShort; aChar = aByte;

// OK by special dispensation: aByte = 13; // 13 is compile-time constant aByte = 12+100 // 112 is compile-time constant

- Why this representation for -1?
 - $\begin{array}{c|c|c} 1 & 00000001_2 \\ + & -1 & 1111111_2 \\ = & 0 & 1|00000000_2 \end{array}$

Only 8 bits in a byte, so bit 8 falls off, leaving 0.

- The truncated bit is in the 2^8 place, so throwing it away gives an equal number modulo 2^8 . All bits to the left of it are also divisible by 2^8 .
- \bullet On unsigned types (char), arithmetic is the same, but we choose to represent only non-negative numbers modulo 2^{16} :


```
Last modified: Mon Sep 28 12:10:19 2015
```

CS61B: Lecture #14 6

Promotion

- \bullet Arithmetic operations (+, *, ...) promote operands as needed.
- Promotion is just implicit conversion.
- For integer operations,
 - if any operand is long, promote both to long.
 - otherwise promote both to int.

```
• So,
```

aByte + 3 == (int) aByte + 3 // Type int aLong + 3 == aLong + (long) 3 // Type long 'A' + 2 == (int) 'A' + 2 // Type int aByte = aByte + 1 // ILLEGAL (why?)

• But fortunately,

```
aByte += 1; // Defined as aByte = (byte) (aByte+1)
```

• Common example:

```
// Assume aChar is an upper-case letter
char lowerCaseChar = (char) ('a' + aChar - 'A'); // why cast?
```

Bit twiddling

- Java (and C, C++) allow for handling integer types as sequences of bits. No "conversion to bits" needed: they already are.
- Operations and their uses:

	Mask		Set		Flip		Flip all
	00101100		00101100		00101100		
&	10100111	Ι	10100111	^	10100111	~	10100111
	00100100		10101111		10001011		01011000

• Shifting:

Left	Arithmetic Right	Logical Right			
10101101 << 3	10101101 >> 3	10101100 >>> 3			
01101000	11110101	00010101			
• What is: (-1) >>> x << n? x >> n? (x >>> 3)	29 ? & ((1<<5)-1)?				

Last modified: Mon Sep 28 12:10:19 2015

CS61B: Lecture #14 9

•