
Public Service Announcement

“DDoSki is back with Cal Hacks 2.0 on October 9th-11th! Ap-
plications will remain open for Cal undergrads till October 4th,
so make sure to submit yours soon! Additionally, if you’re inter-
ested in becoming a director next year, volunteering would be a
great place to start. Link to both sign-ups can be found on our
Facebook event and Facebook page. Come hack with us!”

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 1

CS61B Lecture #12

• Programming Contest: Coming up Saturday 3 October.

• Project 0 due Tuesday at midnight.

• Yes, the lateness policy does extend to Project 0 (as documented in
the information handout):

– 24 hours of slip time.

– 5/12ths of a percent loss (0.416 points) per hour after that.

– Any unused hours can be rolled over to project 1.

– Advice from Josh Hug: Don’t be afraid to scrap and rewrite sec-
tions of code, especially if you don’t quite understand your own
code. Josh:

“Debugging code you don’t understand defeats the pedagog-
ical purpose of the assignment. Wasted hours of precious
youth.”

• For Monday: Head First Java , chapter 10;
and A Java Reference, § 6.2–6.3.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 2

Miscellaneous Topics:

• Exceptions.

• Modularization facilities in Java.

• Importing

• Nested classes.

• Using overridden method.

• Parent constructors.

• Type testing.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 3

What to do About Errors?

• Large amount of any production program devoted to detecting and
responding to errors.

• Some errors are external (bad input, network failures); others are
internal errors in programs.

• When method has stated precondition, it’s the client’s job to comply.

• Still, it’s nice to detect and report client’s errors.

• In Java, we throw exception objects, typically:

throw new SomeException (optional description);

• Exceptions are objects. By convention, they are given two construc-
tors: one with no arguments, and one with a descriptive string argu-
ment (which the exception stores).

• Java system throws some exceptions implicitly, as when you deref-
erence a null pointer, or exceed an array bound.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 4

Catching Exceptions

• A throw causes each active method call to terminate abruptly, until
(and unless) we come to a try block.

• Catch exceptions and do something corrective with try:

try {

Stuff that might throw exception;
} catch (SomeException e) {

Do something reasonable;
} catch (SomeOtherException e) {

Do something else reasonable;
}

Go on with life;

• When SomeException exception occurs in “Stuff. . . ,” we immedi-
ately “do something reasonable” and then “go on with life.”

• Descriptive string (if any) available as e.getMessage() for error
messages and the like.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 5

Exceptions: Checked vs. Unchecked

• The object thrown by throw command must be a subtype of Throwable
(in java.lang).

• Java pre-declares several such subtypes, among them

– Error, used for serious, unrecoverable errors;

– Exception, intended for all other exceptions;

– RuntimeException, a subtype of Exception intended mostly for
programming errors too common to be worth declaring.

• Pre-declared exceptions are all subtypes of one of these.

• Any subtype of Error or RuntimeException is said to be unchecked.

• All other exception types are checked.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 6

Unchecked Exceptions

• Intended for

– Programmer errors: many library functions throw
IllegalArgumentException when one fails to meet a precondi-
tion.

– Errors detected by the basic Java system: e.g.,

∗ Executing x.y when x is null,

∗ Executing A[i] when i is out of bounds,

∗ Executing (String) x when x turns out not to point to a String.

– Certain catastrophic failures, such as running out of memory.

• May be thrown anywhere at any time with no special preparation.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 7

Checked Exceptions

• Intended to indicate exceptional circumstances that are not neces-
sarily programmer errors. Examples:

– Attempting to open a file that does not exist.

– Input or output errors on a file.

– Receiving an interrupt.

• Every checked exception that can occur inside a method must ei-
ther be handled by a try statement, or reported in the method’s
declaration.

• For example,

void myRead () throws IOException, InterruptedException { ... }

means that myRead (or something it calls) might throw IOException

or InterruptedException.

• Language Design: Why did Java make the following illegal?

class Parent { class Child extends Parent {

void f () { ... } void f () throws IOException { ... }

} }

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 8

Good Practice

• Throw exceptions rather than using print statements and System.exit
everywhere,

• . . . because response to a problem may depend on the caller, not just
method where problem arises.

• Nice to throw an exception when programmer violates preconditions.

• Particularly good idea to throw an exception rather than let bad
input corrupt a data structure.

• Good idea to document when methods throw exceptions.

• To convey information about the cause of exceptional condition, put
it into the exception rather than into some global variable:

class MyBad extends Exception { try { ...

public IntList errs; } catch (MyBad e) {

MyBad (IntList nums) { errs=nums; } ... e.errs ...

} }

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 9

Package Mechanics

• Classes correspond to things being modeled (represented) in one’s
program.

• Packages are collections of “related” classes and other packages.

• Java puts standard libraries and packages in package java and javax.

• By default, a class resides in the anonymous package.

• To put it elsewhere, use a package declaration at start of file, as in

package database; or package ucb.util;

• Sun’s javac uses convention that class C in package P1.P2 goes in
subdirectory P1/P2 of any other directory in the class path .

• Unix example:

nova% export CLASSPATH=.:$HOME/java-utils:$MASTERDIR/lib/classes/junit.jar

nova% java junit.textui.TestRunner MyTests

Searches for TestRunner.class in ./junit/textui, ~/java-utils/junit/textui
and finally looks for junit/textui/TestRunner.class in the junit.jar
file (which is a single file that is a special compressed archive of an
entire directory of files).

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 10

Access Modifiers

• Access modifiers (private, public, protected) do not add anything
to the power of Java.

• Basically allow a programmer to declare what classes are supposed
to need to access (“know about”) what declarations.

• In Java, are also part of security—prevent programmers from ac-
cessing things that would “break” the runtime system.

• Accessibility always determined by static types.

– To determine correctness of writing x.f(), look at the definition
of f in the static type of x.

– Why? Because the rules are supposed to be enforced by the
compiler, which only knows static types of things (static types
don’t depend on what happens at execution time).

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 11

The Access Rules

• Suppose we have two packages (not necessarily distinct) and two
distinct classes:

package P1;

public class C1 ... {

// A member named M,

A int M ...

void h (C1 x)

{ ... x.M ... } // OK.

}

package P2;

class C2 extends C3 {

void f (P1.C1 x) {... x.M ...} // OK?

// C4 a subtype of C2 (possibly C2 itself)

void g (C4 y) {... y.M ... } // OK?

}

• The access x.M is

– Legal if A is public;

– Legal if A is protected and P1 is P2;

– Legal if A is package private (default—no keyword) and P1 is P2;

– Illegal if A is private.

• Furthermore, if C3 is C1, then y.M is also legal under the conditions
above, or if A is protected (i.e., even if P1 is not the same as P2).

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 12

What May be Controlled

• Classes and interfaces that are not nested may be public or package
private (we haven’t talked explicitly about nested types yet).

• Members—fields, methods, constructors, and (later) nested types—
may have any of the four access levels.

• May override a method only with one that has at least as permissive
an access level.

– Reason: avoid inconsistency:
package P1; | package P2;

public class C1 { | class C3 {

public int f () { ... } | void g (C2 y2) {

} | C1 y1 = y2

| y2.f (); // Bad???

public class C2 extends C1 { | y1.f (); // OK??!!?

// Actually a compiler error; pretend | }

// it’s not and see what happens | }

int f () { ... }

}

– That is, there’s no point in restricting C2.f, because access con-
trol depends on static types, and C1.f is public.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 13

Intentions of this Design

• public declarations represent specifications—what clients of a pack-
age are supposed to rely on.

• package private declarations are part of the implementation of a
class that must be known to other classes that assist in the imple-
mentation.

• protected declarations are part of the implementation that sub-
types may need, but that clients of the subtypes generally won’t.

• private declarations are part of the implementation of a class that
only that class needs.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 14

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK?

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // ERROR

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // ERROR

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 15

Access Control Static Only

“Public” and “private” don’t apply to dynamic types; it is possible to call
methods in objects of types you can’t name:

package utils; | package mystuff;

/** A Set of things. */ |

public interface Collector { | class User {

void add (Object x); | Collector c =

} | utils.Utils.concat ();

---------------------------- |

package utils; | c.add ("foo"); // OK

public class Utils { | ... c.value (); // ERROR

public static Collector concat () { | ((utils.Concatenator) c).value ()

return new Concatenator (); | // ERROR

} |

} ----------------------------------

/** NON-PUBLIC class that collects strings. */

class Concatenater implements Collector {

StringBuffer stuff = new StringBuffer ();

int n = 0;

public void add (Object x) { stuff.append (x); n += 1; }

public Object value () { return stuff.toString (); }

}
Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 16

Loose End #1: Importing

• Writing java.util.List every time you mean List or
java.lang.regex.Pattern every time you mean Pattern is annoying.

• The purpose of the import clause at the beginning of a source file is
to define abbreviations:

– import java.util.List;means “within this file, you can use List
as an abbreviation for java.util.List.

– import java.util.*; means “within this file, you can use any
class name in the package java.util without mentioning the pack-
age.”

• Importing does not grant any special access; it only allows abbrevi-
ation.

• In effect, your program always contains import java.lang.*;

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 17

Loose End #2: Static importing

• One can easily get tired of writing System.out and Math.sqrt. Do
you really need to be reminded with each use that out is in the
java.lang.System package and that sqrt is in the Math package
(duh)?

• Both examples are of static members. New feature of Java allows
you to abbreviate such references:

– import static java.lang.System.out; means “within this file,
you can use out as an abbreviation for System.out.

– import static java.lang.System.*;means “within this file, you
can use any static member name in System without mentioning the
package.

• Again, this is only an abbreviation. No special access.

• Alas, you can’t do this for classes in the anonymous package.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 18

Loose End #3: Parent constructors

• In lecture notes #5, talked about how Java allows implementer of a
class to control all manipulation of objects of that class.

• In particular, this means that Java gives the constructor of a class
the first shot at each new object.

• When one class extends another, there are two constructors—one
for the parent type and one for the new (child) type.

• In this case, Java guarantees that one of the parent’s constructors
is called first. In effect, there is a call to a parent constructor at
the beginning of every one of the child’s constructors.

• You can call the parent’s constructor yourself. By default, Java calls
the “default” (parameterless) constructor.

class Figure { class Rectangle extends Figure {

public Figure (int sides) { public Rectangle () {

... super (4);

}... }...

} }

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 19

Loose End #4: Using an Overridden Method

• Suppose that you wish to add to the action defined by a superclass’s
method, rather than to completely override it.

• The overriding method can refer to overridden methods by using
the special prefix super.

• For example, you have a class with expensive functions, and you’d
like a memoizing version of the class.

class ComputeHard {

int cogitate (String x, int y) { ... }

...

}

class ComputeLazily extends ComputeHard {

int cogitate (String x, int y) {

if (already have answer for this x and y) return memoized result;
else

int result = super.cogitate (x, y);

memoize (save) result;
return result;

}

}

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 20

Loose End #5: Nesting Classes

• Sometimes, it makes sense to nest one class in another. The nested
class might

– be used only in the implementation of the other, or

– be conceptually “subservient” to the other

• Nesting such classes can help avoid name clashes or “pollution of the
name space” with names that will never be used anywhere else.

• Example: Polynomials can be thought of as sequences of terms.
Terms aren’t meaningful outside of Polynomials, so you might define
a class to represent a term inside the Polynomial class:

class Polynomial {

methods on polynomials

private Term[] terms;

private static class Term {

...

}

}

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 21

Inner Classes

• Last slide showed a static nested class. Static nested classes are
just like any other, except that they can be private or protected,
and they can see private variables of the enclosing class.

• Non-static nested classes are called inner classes.

• Somewhat rare (and syntax is odd); used when each instance of the
nested class is created by and naturally associated with an instance
of the containing class, like Banks and Accounts:

Bank
account

account
Bank

account

account

class Bank { | Bank e = new Bank(...);

private void connectTo (...) {...} | Bank.Account p0 =

public class Account { | e.new Account (...);

public void call (int number) { | Bank.Account p1 =

Bank.this.connectTo (...); ... | e.new Account (...);

} // Bank.this means "the bank that |

} // created me" |

} |

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 22

Trick: Delegation and Wrappers

• Not always appropriate to use inheritance to extend something.

• Homework gives example of a TrReader, which contains another
Reader, to which it delegates the task of actually going out and
reading characters.

• Another example: an “interface monitor:”

interface Storage { | class Monitor implements Storage {

void put (Object x); | int gets, puts;

Object get (); | private Storage store;

} | Monitor (Storage x) { store = x; gets = puts = 0; }

| public void put (Object x) { puts += 1; store.put (x); }

| public Object get () { gets += 1; return store.get (); }

| }

• So now, you can instrument a program:

// ORIGINAL // INSTRUMENTED

Storage S = something; Monitor S = new Monitor (something);
f (S); f(S);

System.out.println (S.gets + " gets");

• Monitor is called a wrapper class.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 23

Loose End #6: instanceof

• It is possible to ask about the dynamic type of something:

void typeChecker (Reader r) {

if (r instanceof TrReader)

System.out.print ("Translated characters: ");

else

System.out.print ("Characters: ");

...

}

• However, this is seldom what you want to do. Why do this:

if (x instanceof StringReader)

read from (StringReader) x;

else if (x instanceof FileReader)

read from (FileReader) x;

...

when you can just call x.read()?!

• In general, use instance methods rather than instanceof.

Last modified: Fri Sep 25 12:53:11 2015 CS61B: Lecture #12 24

	Public Service Announcement
	CS61B Lecture #12
	Miscellaneous Topics:
	What to do About Errors?
	Catching Exceptions
	Exceptions: Checked vs. Unchecked
	Unchecked Exceptions
	Checked Exceptions
	Good Practice
	Package Mechanics
	Access Modifiers
	The Access Rules
	What May be Controlled
	Intentions of this Design
	Quick Quiz
	Access Control Static Only
	Loose End #1: Importing
	Loose End #2: Static importing
	Loose End #3: Parent constructors
	Loose End #4: Using an Overridden Method
	Loose End #5: Nesting Classes
	Inner Classes
	Trick: Delegation and Wrappers
	Loose End #6: instanceof

