CS61B Lecture #5: Simple Pointer Manipulation

Announcement
e Today: More poinfer hacking.

¢ Handing in labs and homework: We'll be lenient about accepting
late homework and labs for the first few. Just get it done: part
of the point is getting to understand the tools involved. We will not
accept submissions by email.

e For bugs, use bug-submit. There are instructions on the class home-
page Announcements.

Last modified: Fri Aug 3113:32:54 2012 CS61B: Lecture #5 1

Destructive Incrementing

Destructive solutions may modify the original list to save time or space:

/**% List of all items in P incremented by n. May destroy original. */
static IntList dincrList (IntList P, int n) {

if (P == null) X = IntList.list (3, 43, 56);
return null; /% IntList.list from HW #1 */

else {
P.head += n;
P.tail = dincrList (P.tail, n);
return P;

Q = dincrList (X, 2);

}
3

L]]

/**% List L destructively incremented

* by n. */ P:
static IntList dincrList (IntList L, int n) {

// ’for’ can do more than count!

for (IntList p = L; p != null; p = p.tail)

p.head += n;
return L;

}

Last modified: Fri Aug 3113:32:54 2012 CS61B: Lecture #5 2

Another Example: Non-destructive List Deletion

If L is the list [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new
list [1, 9].

/** The list resulting from removing all instances of X from L
* non-destructively. */
static IntList removeAll (IntList L, int x) {
if (L == null)
return null;
else if (L.head == x)
return removeAll (L.tail, x);
else
return new IntlList (L.head, removeAll (L.tail, x));

Last modified: Fri Aug 3113:32:54 2012 CS61B: Lecture #5 3

Aside: How to Write a Loop (in Theory)

e Try to give a description of how things look on any arbitrary itera-
tion of the loop.

e This description is known as a loop invariant, because it is true from
one iteration to the next.

e The loop body then must

- Start from any situation consistent with the invariant;
- Make progress in such a way as fo make the invariant true again.
while (condition) {
// Invariant true here
loop body
// Invariant again true here
b

// Invariant true and condition false.

e So if (invariant and not condition) is enough to insure we've got the
answer, we're done!

Last modified: Fri Aug 3113:32:54 2012 CS61B: Lecture #5 4

Iterative Non-destructive List Deletion

Same as before, but use front-to-back iteration rather than recursion.
/*x The list resulting from removing all instances of X from L
* non-destructively. */
static IntList removeAll (IntList L, int x) {
IntList result, last; .[E}
result = last = null; P: 2‘ 4+4’~1‘ 4+4’~2‘ 4+4’~9 F\J
for (; L !=null; L = L.tail) { L;E

/* L !'= null and Z is true. */
result:| }—~1] }++9]\]

if (x == L.head)
continue; removeAll (P, 2)
P does not changel!

else if (last == null)
result = last = new IntList (L.head, null);
else
last = last.tail = new IntList (L.head, null);
}
return result;
}
Here, I is the loop invariant:
Result is all elements of L; not equal to x up to and not
including L, and last points to the last element of result,
if any. We use L here to mean "the original sequence of

int values in L."

Last modified: Fri Aug 3113:32:54 2012 CS61B: Lecture #5 5

Destructive Deletion

— : Original . after Q = dremoveAll (Q,1)

Q: o420 4—Bl A {1 3—Jor—{IN

v

/** The list resulting from removing all instances of X from L.
* The original list may be destroyed. */
static IntList dremoveAll (IntList L, int x) {
if (L == null)
return null;
else if (L.head == x)
return dremoveAll (L.tail, x);
else {
L.tail = dremoveAll (L.tail, x);
return L;

Last modified: Fri Aug 3113:32:54 2012 CS61B: Lecture #5 6

Iterative Destructive Deletion

/*x The list resulting from removing all instances of X from L.
* (QOriginal contents of L may be destroyed. */
static IntList dremoveAll (IntList L, int x) {
IntList result, last;
result = last = null;
while (L != null) { P:
IntList next = L.tail;
if (x != L.head) { result:
if (last == null) last:
result = last = L;
else LIEQ
last last.tail = L; nexf:Eﬂ

) P = dremoveAll (P, 2)
L.tail null;

}
L =
}

return result;

}

next;

Last modified: Fri Aug 3113:32:54 2012 CS61B: Lecture #5 7

	CS61B Lecture #5: Simple Pointer Manipulation
	Destructive Incrementing
	Another Example: Non-destructive List Deletion
	Aside: How to Write a Loop (in Theory)
	Iterative Non-destructive List Deletion
	Destructive Deletion
	Iterative Destructive Deletion

