CS61B Lecture #4: Values and Containers

e Labs are normally due at midnight Friday. This week, we're not fussy,
but do be sure to submit the lab.

e Readings for today: Chapter 4 from A Java Reference. See also,
Head First Java, Chapter 3, Chapter 5.

e Looking ahead: Head First Java, Chapters 2 and 4.

e Today. Simple classes. Scheme-like lists. Destructive vs. non-
destructive operations. Models of memory.

e Project #0 to be released later tonight. Due Sept. 20. Watch the
Labs and Homework page.

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 1

Values and Containers

e Values are numbers, booleans, and pointers. Values never change.

3 ‘a true % AN f

e Simple containers contain values:

(3] L] e
Examples: variables, fields, individual array elements, parameters.

e Structured containers contain (O or more) other containers:

Class Object Array Object Empty Object

o1 2

h
42/17] 9|
Alternative 'h:| 3 3
2|9

Notation | t:

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 2

Pointers

e Pointers (or references) are values that reference (point to) con-
tainers.

e One particular pointer, called null, points to nothing.

e In Java, structured containers contain only simple containers, but
pointers allow us to build arbitrarily big or complex structures any-
way.

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 3

Containers in Java

e Containers may be named or anonymous.

e In Java, all simple containers are named, all structured contain-
ers are anonymous, and pointers point only to structured containers.
(Therefore, structured containers contain only simple containers).

named simple containers (fields)
wiThin/iTrucTured containers
1-

h h/t
. [| \
Pl — 3 70
simple container structured containers
(local variable) (anonymous)

e In Java, assignment copies values into simple containers.

e Exactly like Schemel!

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 4

Defining New Types of Object

e Class declarations introduce new types of objects.
e Example: list of integers:

public class IntList {
// Constructor function
// (used to initialize new object)
/** List cell containing (HEAD, TAIL). %/
public IntList (int head, IntList tail) {
this.head = head; this.tail = tail;
}

// Names of simple containers (fields)
public int head;
public IntList tail;

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 5

Primitive Operations

N
Q[N

IntList Q, L;

= new IntList(3, null); L: = N
= L’ Q: ‘

= new IntList(42, null);
.tail = Q;

L.tail.head += 1;
// Now Q.head == 43
// and L.tail.head == 43

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 6

Side Excursion: Another Way to View Pointers

e Some folks find the idea of “copying an arrow" somewhat odd.
e Alternative view: think of a pointer as a label, like a street address.

e Each object has a permanent label on it, like the address plaque on
a house.

e Then a variable containing a pointer is like a scrap of paper with a
street address written on it.

e One view:
last:
result:| | 5] ——45]\]
e Alternative view:

last:
result: L5 #3]

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 7

Another Way to View Pointers (II)

e Assigning a pointer fo a variable looks just like assigning an integer
to a variable.

e So, after executing "“last = last.tail;" we have
last:
result:| -} 5] }-45]\]
e Alternative view:
last:
resuh“: L5 ‘#3‘ ;’5 N

e Under alternative view, you might be less inclined to think that as-
signment would change object #7 itself, rather than just “last”.

e BEWARE! Internally, pointers really are just numbers, but Java
treats them as more than that: they have types, and you can't just
change integers into pointers.

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 8

Destructive vs. Non-destructive Nondestructive IncrList: Recursive

Problem: Given a (pointer to a) list of integers, L, and an integer in- /** List of all items in P incremented by n. */
crement n, return a list created by incrementing all elements of the list static IntList incrList (IntList P, int n) {

by n. if (P == null)

return null;

*x List of all it in P i ted b . D t dif
/ 1St ol all items in ¥ incremented by n. D0€s not modity else return new IntList (P.head+n, incrList(P.tail, n));

* existing IntLists. */ }
static IntList incrlList (IntList P, int n) {
return /+(P, with each element incremented by n)*/ e Why does incrList have to return its result, rather than just set-

+ ting P?

We say incrList is non-destructive, because it leaves the input objects e Inthecall incrList (P, 2),whereP contains 3 and 43, which IntList
unchanged, as shown on the left. A destructive method may modify the object gets created first?

input objects, so that the original data is no longer available, as shown
on the right:

After Q = incrList(L, 2): After Q = dincrList(L, 2) (destructive):
Gl {3] b Ul 5] e
o[143 @]«

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 9 Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 10

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList (IntList P, int n) {
if (P == null)
return null; P: ‘ 3 ‘ H43‘ 56N

IntList result, last;

result = last last:
= new IntList (P.head+n, null);

while (P.tail != null) { pesulf;D }5‘ } }45‘ } }58N
P = P.tail;
last.tail

= new IntList (P.head+n, null);

last = last.tail; <L

}

return result;

Last modified: Fri Aug 31 14:51:39 2012 CS61B: Lecture #4 11

	CS61B Lecture #4: Values and Containers
	Values and Containers
	Pointers
	Containers in Java
	Defining New Types of Object
	Primitive Operations
	Side Excursion: Another Way to View Pointers
	Another Way to View Pointers (II)
	Destructive vs. Non-destructive
	Nondestructive IncrList: Recursive
	An Iterative Version

