
Lecture #35

Public-Service Announcement.

H@B and IEEE present: “Hack”
Time: Sat 1100–Sun 1100
Place: Wozniak Lounge
Prizes: iPads, 24" IPS monitors, Nexus 7s, and more.

• Today: Dynamic programming and memoization.

Last modified: Fri Nov 16 14:56:16 2012 CS61B: Lecture #35 1

Dynamic Programming

• A puzzle (D. Garcia):

– Start with a list with an even number of non-negative integers.

– Each player in turn takes either the leftmost number or the
rightmost.

– Idea is to get the largest possible sum.

• Example: starting with (6, 12, 0, 8), you (as first player) should take
the 8. Whatever the second player takes, you also get the 12, for a
total of 20.

• Assuming your opponent plays perfectly (i.e., to get as much as pos-
sible), how can you maximize your sum?

• Can solve this with exhaustive game-tree search.

Last modified: Fri Nov 16 14:56:16 2012 CS61B: Lecture #35 2

Obvious Program

• Recursion makes it easy, again:

int bestSum (int[] V) {

int total, i, N = V.length;

for (i = 0, total = 0; i < N; i += 1) total += V[i];

return bestSum (V, 0, N-1, total);

}

/** The largest sum obtainable by the first player in the choosing

* game on the list V[LEFT .. RIGHT], assuming that TOTAL is the

* sum of all the elements in V[LEFT .. RIGHT]. */

int bestSum (int[] V, int left, int right, int total) {

if (left > right)

return 0;

else {

int L = total - bestSum (V, left+1, right, total-V[left]);

int R = total - bestSum (V, left, right-1, total-V[right]);

return Math.max (L, R);

}

}

• Time cost is C(0) = 1, C(N) = 2C(N − 1); so C(N) ∈ Θ(2N)

Last modified: Fri Nov 16 14:56:16 2012 CS61B: Lecture #35 3

Still Another Idea from CS61A

• The problem is that we are recomputing intermediate results many
times.

• Solution: memoize the intermediate results. Here, we pass in an
N × N array (N = V.length) of memoized results, initialized to -1.

int bestSum (int[] V, int left, int right, int total, int[][] memo) {

if (left > right)

return 0;

else if (memo[left][right] == -1) {

int L = total - bestSum (V, left+1, right, total-V[left], memo);

int R = total - bestSum (V, left, right-1, total-V[right], memo);

memo[left][right] = Math.max (L, R);

}

return memo[left][right];

}

}

• Now the number of recursive calls to bestSum must be O(N 2), for
N = the length of V , an enormous improvement from Θ(2N)!

Last modified: Fri Nov 16 14:56:16 2012 CS61B: Lecture #35 4

Iterative Version

• I prefer the recursive version, but the usual presentation of this
idea—known as dynamic programming—is iterative:

int bestSum (int[] V) {

int[][] memo = new int[V.length][V.length];

int[][] total = new int[V.length][V.length];

for (int i = 0; i < V.length; i += 1)

memo[i][i] = total[i][i] = V[i];

for (int k = 1; k < V.length; k += 1)

for (int i = 0; i < V.length-k-1; i += 1) {

total[i][i+k] = V[i] + total[i+1][i+k];

int L = total[i][i+k] - memo[i+1][i+k];

int R = total[i][i+k] - memo[i][i+k-1];

memo[i][i+k] = Math.max (L, R);

}

return memo[0][V.length-1];

}

• That is, we figure out ahead of time the order in which the memo-
ized version will fill in memo, and write an explicit loop.

• Save the time needed to check whether result exists.

• But I say, why bother?
Last modified: Fri Nov 16 14:56:16 2012 CS61B: Lecture #35 5

Longest Common Subsequence

• Problem: Find length of the longest string that is a subsequence of
each of two other strings.

• Example: Longest common subsequence of
“sally sells sea shells by the seashore” and
“sarah sold salt sellers at the salt mines”

is
“sa sl sa sells the sae” (length 23)

• Similarity testing, for example.

• Obvious recursive algorithm:

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls (String S0, int k0, String S1, int k1) {

if (k0 == 0 || k1 == 0) return 0;

if (S0[k0-1] == S1[k1-1]) return 1 + lls (S0, k0-1, S1, k1-1);

else return Math.max (lls (S0, k0-1, S1, k1), lls (S0, k0, S1, k1-1);

}

• Exponential, but obviously memoizable.

Last modified: Fri Nov 16 14:56:16 2012 CS61B: Lecture #35 6

Memoized Longest Common Subsequence

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls (String S0, int k0, String S1, int k1) {

int[][] memo = new int[k0+1][k1+1];

for (int[] row : memo) Arrays.fill (row, -1);

return lls (S0, k0, S1, k1, memo);

}

private static int lls (String S0, int k0, String S1, int k1, int[][] memo) {

if (k0 == 0 || k1 == 0) return 0;

if (memo[k0][k1] == -1) {

if (S0[k0-1] == S1[k1-1])

memo[k0][k1] = 1 + lls (S0, k0-1, S1, k1-1, memo);

else

memo[k0][k1] = Math.max (lls (S0, k0-1, S1, k1, memo),

lls (S0, k0, S1, k1-1, memo));

}

return memo[k0][k1];

}

Q: How fast will the memoized version be?
Last modified: Fri Nov 16 14:56:16 2012 CS61B: Lecture #35 7

	Lecture #35
	Dynamic Programming
	Obvious Program
	Still Another Idea from CS61A
	Iterative Version
	Longest Common Subsequence
	Memoized Longest Common Subsequence

