 Public-Service Announcement. H@B and IEEE present: "Hack" Time: Soft 1000-Sun 1100 Place: Wozniak Lange Prizes: iPads, 24" IPS monitors, Nexus 7s, and more. Today: Dynamic programming and memoization. Still Another Idea ISBN 2002. Today: Dynamic programming the mitrik is the set of a constraint of the set of a constraint (set of a constraint o	Lecture #35 Public-Service Announcement. M@B and IEEE present: "Hack" Time: Sat 1100-Sun 1100 Place: Wozniak Lounge Prizes: iPads, 24" IPS monitors, Nexus 7s, and more. • Today: Dynamic programming and memoization.		 Dynamic Programming A puzzle (D. Garcia): Start with a list with an even number of non-negative integers. Each player in turn takes either the leftmost number or the rightmost. Idea is to get the largest possible sum. Example: starting with (6, 12, 0, 8), you (as first player) should take the 8. Whatever the second player takes, you also get the 12, for a total of 20. Assuming your opponent plays perfectly (i.e., to get as much as possible), how can you maximize your sum? Can solve this with exhaustive game-tree search. 	
Let motified Fit best 2 (Let motified Fit bes				
Obvious Program • Recursion makes it easy, again: int bestSum (int[] V) { int total, i, N = V.length; for (i = 0, total = 0; i < N; i + 1) total += V[1]; return bestSum (V, 0, N-1, total); /** The largest sum obtainable by the first player in the choosing * game on the list V[LEFT RICHT]. *RICHT]. *N total / { int bestSum (int[] V, int left, int right, int total) { int bestSum (int[] V, int left, int right, int total) { int bestSum (int[] V, int left, int right, int total) { int bestSum (int[] V, int left, int right, total-V[left]); int L = total - bestSum (V, left+1, right, total-V[left]); return Math.max (L, R); } • Time cost is $C(0) = 1$, $C(N) = 2C(N-1)$; so $C(N) \in \Theta(2^N)$ we control to the two the two the number of recursive calls to bestSum must be $O(N^2)$, for N = the length of V, an enormous improvement from $\Theta(2^N)$! • Now the number of recursive calls to bestSum must be $O(N^2)$, for N = the length of V, an enormous improvement from $\Theta(2^N)$!	Last modified: Fri Nov 16 14:56:16 2012	CS61B: Lecture #35 1	Last modified: Fri Nov 16 14:56:16 2012	CS61B: Lecture #35 2
 Recursion makes it easy, again: int bestSum (int[] V) { int total, i, N = V.length; for (i = 0, total = 0; i < N; i += 1) total += V[i]; return bestSum (V, 0, N-1, total); // ** The largest sum obtainable by the first player in the choosing * game on the list V[LEFT RIGHT]. assuming that TOTAL is the * sum of all the elements in V[LEFT RIGHT]. */ int bestSum (int[] V, int left, int right, int total) { if (left > right) return 0; else { int L = total - bestSum (V, left+1, right, total-V[left]); int R = total - bestSum (V, left+1, right-1, total-V[right]); return Math.max (L, R); } • Time cost is C(0) = 1, C(N) = 2C(N - 1); so C(N) ∈ Θ(2^N)	Obvious Program		Still Another Idea from CS61A	
• Time cost is $C(0) = 1$, $C(N) = 2C(N-1)$; so $C(N) \in \Theta(2^N)$	<pre>• Recursion makes it easy, again: int bestSum (int[] V) { int total, i, N = V.length; for (i = 0, total = 0; i < N; i += 1) total += V[i]; return bestSum (V, 0, N-1, total); } /** The largest sum obtainable by the first player in the choosing * game on the list V[LEFT RIGHT], assuming that TOTAL is the * sum of all the elements in V[LEFT RIGHT]. */ int bestSum (int[] V, int left, int right, int total) { if (left > right) return 0; else { int L = total - bestSum (V, left+1, right, total-V[left]); int R = total - bestSum (V, left, right-1, total-V[right]); return Math.max (L, R); } }</pre>		 The problem is that we are recomputing intermediate results many times. Solution: memoize the intermediate results. Here, we pass in an N × N array (N = V.length) of memoized results, initialized to -1. int bestSum (int[] V, int left, int right, int total, int[][] memo) { if (left > right) return 0; else if (memo[left][right] == -1) { int L = total - bestSum (V, left+1, right, total-V[left], memo); int R = total - bestSum (V, left, right-1, total-V[right], memo); memo[left][right] = Math.max (L, R); } return memo[left][right]; } } Now the number of recursive calls to bestSum must be O(N²), for N = the length of V, an enormous improvement from $\Theta(2^N)$! 	
	• Time cost is $C(0) = 1$, $C(N) = 2C(N-1)$;	So $C(N) \in \Theta(2^N)$	Last madified: Eri Neu 14 14-54-14 2012	20(10.1 - Lune #25 - 4

Iterative Version

• I prefer the recursive version, but the usual presentation of this idea—known as *dynamic programming*—is iterative:

```
int bestSum (int[] V) {
    int[][] memo = new int[V.length][V.length];
    int[][] total = new int[V.length][V.length];
    for (int i = 0; i < V.length; i += 1)
        memo[i][i] = total[i][i] = V[i];
    for (int k = 1; k < V.length; k += 1)
        for (int i = 0; i < V.length-k-1; i += 1) {
        total[i][i+k] = V[i] + total[i+1][i+k];
        int L = total[i][i+k] - memo[i+1][i+k];
        int R = total[i][i+k] - memo[i][i+k-1];
        memo[i][i+k] = Math.max (L, R);
    }
    return memo[0][V.length-1];
}</pre>
```

• That is, we figure out ahead of time the order in which the memoized version will fill in memo, and write an explicit loop.

CS61B: Lecture #35 5

CS61B: Lecture #35 7

• Save the time needed to check whether result exists.

```
• But I say, why bother?
Last modified: Fri Nov 16 14:56:16 2012
```

Last modified: Fri Nov 16 14:56:16 2012

Longest Common Subsequence

- **Problem:** Find length of the longest string that is a subsequence of each of two other strings.
- Example: Longest common subsequence of

"sally⊔sells⊔sea⊔shells⊔by⊔the⊔seashore" and "sarah⊔sold⊔salt⊔sellers⊔at⊔the⊔salt⊔mines"

"sauslusausellsuutheusae" (length 23)

- Similarity testing, for example.
- Obvious recursive algorithm:

is

```
/** Length of longest common subsequence of S0[0..k0-1]
* and S1[0..k1-1] (pseudo Java) */
static int lls (String S0, int k0, String S1, int k1) {
    if (k0 == 0 || k1 == 0) return 0;
    if (S0[k0-1] == S1[k1-1]) return 1 + lls (S0, k0-1, S1, k1-1);
    else return Math.max (lls (S0, k0-1, S1, k1), lls (S0, k0, S1, k1-1);
}
```

• Exponential, but obviously memoizable.

```
Last modified: Fri Nov 16 14:56:16 2012
```

```
CS61B: Lecture #35 6
```

Memoized Longest Common Subsequence

```
/** Length of longest common subsequence of SO[0..k0-1]
   * and S1[0..k1-1] (pseudo Java) */
  static int lls (String S0, int k0, String S1, int k1) {
    int[][] memo = new int[k0+1][k1+1];
    for (int[] row : memo) Arrays.fill (row, -1);
    return lls (S0, k0, S1, k1, memo);
  }
  private static int lls (String S0, int k0, String S1, int k1, int[][] memo) {
    if (k0 == 0 || k1 == 0) return 0;
    if (memo[k0][k1] == -1) {
      if (SO[k0-1] == S1[k1-1])
        memo[k0][k1] = 1 + lls (S0, k0-1, S1, k1-1, memo);
      else
        memo[k0][k1] = Math.max (lls (S0, k0-1, S1, k1, memo),
                                 lls (SO, kO, S1, k1-1, memo));
    }
    return memo[k0][k1];
  }
Q: How fast will the memoized version be?
```