CS61B Lecture \#33

Today's Readings: Graph Structures: DSIJ, Chapter 12

- For expressing non-hierarchically related items
- Examples:
- Networks: pipelines, roads, assignment problems
- Representing processes: flow charts, Markov models
- Representing partial orderings: PERT charts, makefiles

Some Terminology

- A graph consists of
- A set of nodes (aka vertices)
- A set of edges: pairs of nodes.
- Nodes with an edge between are adjacent.
- Depending on problem, nodes or edges may have labels (or weights)
- Typically call node set $V=\left\{v_{0}, \ldots\right\}$, and edge set E.
- If the edges have an order (first, second), they are directed edges, and we have a directed graph (digraph), otherwise an undirected graph.
- Edges are incident to their nodes.
- Directed edges exit one node and enter the next.
- A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed).
- A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Directed Acyclic Graph-DAG.

Some Pictures

Trees are Graphs

- A graph is connected if there is a (possibly directed) path between every pair of nodes.
- That is, if one node of the pair is reachable from the other.
- A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.
- A connected, acyclic, undirected graph is also called a free tree. Free: we're free to pick the root; e.g.,

(a)

More Examples

- Edge = some relationship

- Edge $=$ next state might be (with probability)

- Edge $=$ next state in state machine, label is triggering input. (Start at s. Being in state 4 means "there is a substring '001' somewhere in the input".)

Examples of Use

- Edge $=$ Connecting road, with length .

- Edge $=$ Must be completed before: Node label $=$ time to complete.

- Edge $=$ Begat

Representation

- Often useful to number the nodes, and use the numbers in edges.
- Edge list representation: each node contains some kind of list (e.g., linked list or array) of its successors (and possibly predecessors).

1:

2: b \square
(3)
(i) (
3:c)
(1,2)
- Edge sets: Collection of all edges. For graph above:

$$
\{(1,2),(1,3),(2,3)\}
$$

- Adjacency matrix: Represent connection with matrix entry:
$\left.\begin{array}{l} \\ 1 \\ 2 \\ 3\end{array} \begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes.
- Can't quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:

Treat 0 as the root and do recursive traversal down the two edges out of each node: $\Theta\left(2^{N}\right)$ operations!

- So typically try to visit each node constant \# of times (e.g., once).

Example: Depth-First Traversal

Problem: Visit every node reachable from v once, visiting nodes further from start first.

```
Stack<Vertex> fringe;
fringe = stack containing {v};
while (! fringe.isEmpty()) {
    Vertex v = fringe.pop ();
    if (! marked(v)) {
            mark(v);
            VISIT(v);
            For each edge (v,w) {
                if (! marked (w))
                    fringe.push (w);
        }
    }
}
```


General Graph Traversal Algorithm

```
COLLECTION_OF_VERTICES fringe;
```

fringe $=$ INITIAL_COLLECTION;
while (! fringe.isEmpty()) \{
Vertex v = fringe.REMOVE_HIGHEST_PRIORITY_ITEM();
if (! MARKED (v)) \{
MARK(v);
VISIT(v);
For each edge (v, w) \{
if (NEEDS_PROCESSING(w))
Add w to fringe;
\}
\}
\}

Replace COLLECTION OF VERTICES, INITIAL COLLECTION, etc. with various types, expressions, or methods to different graph algorithms.

Depth-First Traversal Illustrated

Marked:

$[b, d]$

[c,e,d]

[e,d]

[d,f,e,d]
[]

[e,e,d]

Last modified: Sun Nov 13 20:15:50 2011

Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with the edges.

- That is, order the nodes v_{0}, v_{1}, \ldots such that v_{k} is never reachable from $v_{k^{\prime}}$ if $k^{\prime}>k$.
- Gmake does this. Also PERT charts.

[A, B , C, F, D, G, E, H] or
[A,C,B,D,F,E,G,H], or [A, B, C, F, D, E, H, G], or

Set<Vertex> fringe; fringe = set of all nodes with no predecessors; while (! fringe.isEmpty()) \{

Vertex $\mathrm{v}=$ fringe.removeOne (); add v to end of result list;
For each edge (v, w) \{ decrease predecessor count of w; if (predecessor count of w == 0) fringe.add (w);
\}
\}

Topological Sort in Action

Output: []

$[A, C, B, F]$
[A]

$[A, C, B, F, D]$
$[A, C]$

$[A, C, B, F, D, E, G, H]$

Shortest Paths: Dijkstra's Algorithm

Problem: Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, s, to all nodes.

- "Shortest" = sum of weights along path is smallest.
- For each node, keep estimated distance from s, \ldots
- ... and of preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;
For each node $\mathrm{v}\{\mathrm{v}$.dist() $=\infty$; v.back() = null; \}
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) \{
Vertex $\mathrm{v}=$ fringe.removeFirst ();
For each edge (v, w) \{
if (v.dist() + weight(v,w) < w.dist())
\{ w.dist() = v.dist() + weight(v,w) ; w.back() = v; \}
\}
\}

Example

Final result:

\ldots Shortest-path tree
(X|d) processed node at distance d
y|d node in fringe at distance d

