
CS61B Lecture #3

• Reading: Please read Chapter 4 of the reader A Java Reference for
Friday (on Values, Types, and Containers).

• Labs: We are forgiving during the first week, but try to get your
lab1 submitted properly by Friday night. DBC: Let us know if you
can’t get something to work!

• Homework: Please see Homework #1 on the lab page.

Last modified: Wed Aug 29 13:21:22 2012 CS61B: Lecture #3 1

More Iteration: Sort an Array

Problem. Print out the command-line arguments in order:

% java sort the quick brown fox jumped over the lazy dog

brown dog fox jumped lazy over quick the the

Plan.

class Sort {

/** Sort and print WORDS lexicographically. */

public static void main (String[] words) {

sort (words, 0, words.length-1);

print (words);

}

/** Sort items A[L..U], with all others unchanged. */

static void sort (String[] A, int L, int U) { /* TOMORROW */ }

/** Print A on one line, separated by blanks. */

static void print (String[] A) { /* TOMORROW */ }

}

Last modified: Wed Aug 29 13:21:22 2012 CS61B: Lecture #3 2

Selection Sort

/** Sort items A[L..U], with all others unchanged. */

static void sort (String[] A, int L, int U) {

if (L < U) {

int k = indexOfLargest (A, L, U);

String tmp = A[k]; A[k] = A[U]; A[U] = tmp;

sort (A, L, U-1); // Sort items L to U-1 of A

}

}

Iterative version:

while (L < U) {

int k = indexOfLargest (A, L, U);

String tmp = A[k]; A[k] = A[U]; A[U] = tmp;

U -= 1;

}

And we’re done! Well, OK, not quite.

Last modified: Wed Aug 29 13:21:22 2012 CS61B: Lecture #3 3

Really Find Largest

/** Value k, I0<=k<=I1, such that V[k] is largest element among

* V[I0], ... V[I1]. Requires I0<=I1. */

static int indexOfLargest (String[] V, int i0, int i1) {

if (i0 >= i1)

return i1;

else /* if (i0 < i1) */ {

int k = indexOfLargest (V, i0+1, i1);

return (V[i0].compareTo (V[k]) > 0) ? i0 : k;

// or if (V[i0].compareTo (V[k]) > 0) return i0; else return k;

}

}

Iterative:

int i, k;

k = i1; // Deepest iteration

for (i = i1-1; i >= i0; i -= 1)

k = (V[i].compareTo (V[k]) > 0) ? i : k;

return k;

Last modified: Wed Aug 29 13:21:22 2012 CS61B: Lecture #3 4

Finally, Printing

/** Print A on one line, separated by blanks. */

static void print (String[] A) {

for (int i = 0; i < A.length; i += 1)

System.out.print (A[i] + " ");

System.out.println ();

}

/* Looking ahead: There’s a brand-new syntax for the for
* loop here (as of J2SE 5): */

for (String s : A)

System.out.print (s + " ");

/* Use it if you like, but let’s not stress over it yet! */

Last modified: Wed Aug 29 13:21:22 2012 CS61B: Lecture #3 5

Another Problem

Given an array of integers, A, move its last element, A[A.length-1], to
just after nearest previous item that is ≤ to it (shoving other elements
to the right). For example, if A starts out as

{ 1, 9, 4, 3, 0, 12, 11, 9, 15, 22, 12 }

then it ends up as

{ 1, 9, 4, 3, 0, 12, 11, 9, 12, 15, 22 }

If there is no such previous item, move A[A.length-1] to the beginning
of A (i.e., to A[0]). So

{ 1, 9, 4, 3, 0, 12, 11, 9, 15, 22, -2 }

would become

{ -2, 1, 9, 4, 3, 0, 12, 11, 9, 15, 22 }

(Preliminary question: How can I state this without making this last
case special?)

Last modified: Wed Aug 29 13:21:22 2012 CS61B: Lecture #3 6

A Solution (from class)

class Shove {

/** Move A[A.length-1] so that all items after it are greater than

* it is, displacing those items to the right (towards

* higher indices). */

static void moveOver(int[] A) {

for (int i = A.length - 2; i >= 0; i -= 1) {

if (A[i] <= A[i+1])

break;

int tmp = A[i]; A[i] = A[i+1]; A[i+1] = tmp;

}

}

}

Last modified: Wed Aug 29 13:21:22 2012 CS61B: Lecture #3 7

	CS61B Lecture #3
	More Iteration: Sort an Array
	Selection Sort
	Really Find Largest
	Finally, Printing
	Another Problem
	A Solution (from class)

