
CS61B Lecture #29

Administrative

• Test #2 on Wednesday, 9 November, here.

• HKN CS61B Midterm 2 Review Session:
306 Soda, Saturday, November 3, 1–4PM.

Today:

• Balanced search structures (DS(IJ), Chapter 9

Coming Up:

• Pseudo-random Numbers (DS(IJ), Chapter 11)
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Balanced Search: The Problem

• Why are search trees important?

– Insertion/deletion fast (on every operation, unlike hash table,
which has to expand from time to time).

– Support range queries, sorting (unlike hash tables)

• But O(lg N) performance from binary search tree requires remaining
keys be divided ≈ by some some constant > 1 at each node.

• In other words, that tree be “bushy”

• “Stringy” trees (many nodes with one side much longer than other)
perform like linked lists.

• Suffices that heights of two subtrees always differ by no more than
constant K.
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Example of Direct Approach: B-Trees

Idea: If tree grows/shrinks only at root, then two sides always have
same height.

• Order M B-tree is an M-ary search tree, M > 2.

• Each node, except root, has from ⌈M/2⌉ to M children, and one key
“between” each two children.

• Root has from 2 to M children (in non-empty tree).

• Children at bottom of tree are all empty (don’t really exist) and
equidistant from root.

• Obeys search-tree property:

– Keys are sorted in each node.

– All keys in subtrees to left of a key, K, are < K, and all to right
are > K.

• Searching is simple generalization of binary search.

• Insertion: add just above bottom; split overfull nodes as needed,
moving one key up to parent.
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Sample Order 4 B-tree ((2,4) Tree)

10 20 30 40* 50 60 95 100 120 130 140 150

25 55 90 125

115

• Crossed lines show path when finding 40.

• Keys on either side of each child pointer in path bracket 40.

• Each node has at least 2 children, and all leaves (little circles) are
at the bottom, so height must be O(lg N).

• In real-life B-tree, order typically much bigger

– comparable to size of disk sector, page, or other convenient unit
of I/O
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Inserting in B-tree (Simple Case)

• Start:

5 10 20 25 30 40 50

15 35 45

• Insert 7:

5 7* 10 20 25 30 40 50

15 35 45
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Inserting in B-Tree (Splitting)

• Insert 27:

5 7 10 20 25 27* 30 40 50

15 35 45(too big)

5 7 10 20 27 30 40 50

15 25* 35 45(too big)

5 7 10 20 27 30 40 50

15 35 45

25*(new root)
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Deleting Keys from B-tree

• Remove 20 from last tree.

5 7 10 27 30 40 50

15 35 45

25

(too small)

(combine)

5 7 10 15 27 30 40 50

35 45

25

(too big)

5 10 15 27 30 40 50

7 35 45

25
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Red-Black Trees

• Red-black tree is a binary search tree with additional constraints
that limit how unbalanced it can be.

• Thus, searching is always O(lg N).

• Used for Java’s TreeSet and TreeMap types.

• When items are inserted or deleted, tree is rotated as needed to
restore balance.

• Constraints:

1. Each node is (conceptually) colored red or black.

2. Root is black.

3. Every leaf node contains no data (as for B-trees) and is black.

4. Every leaf has same number of black ancestors.

5. Every internal node has two children.

6. Every red node has two black children.

• Conditions 4, 5, and 6 guarantee O(lg N) searches.
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Sample Red-Black Tree

• Every red-black tree corresponds to a (2,4) tree, and the operations
on one correspond to those on the other.

• Each node of (2,4) tree corresponds to a cluster of 1–3 red-black
nodes in which the top node is black and any others are red.

5 10 20 25 30 40 50

15 35 45

10 20 30 40 50

5 25

15

45

35
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Red-Black Insertion and Rotations

• Insert at bottom just as for binary tree (color red except when tree
initially empty).

• Then rotate (and recolor) to restore red-black property, and thus
balance.

• Rotation of trees preserves binary tree property, but changes bal-
ance.

A C

B
E

D

C E

D
A

B
D.rotateRight()

B.rotateLeft()
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Example of Red-Black Insertion (I)

• Insert 7:

7

10 20 30 40 50

5 25

15

45

35

5 10 20 30 40 50

7 25

15

45

35

– Here, sibling of offending node (10) is black, so rotate and re-
color.

– In corresponding (2,4) tree, new node fits in existing node.

– (Dashed lines show groups of tree nodes that correspond to (2,4)
tree nodes with > 2 children.)
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Example of Red-Black Insertion (I)

• Insert 7:

7

10 20 30 40 50

5 25

15

45

35

5 10 20 30 40 50

7 25

15

45

35

– Here, sibling of offending node (10) is black, so rotate and re-
color.

– In corresponding (2,4) tree, new node fits in existing node.

– (Dashed lines show groups of tree nodes that correspond to (2,4)
tree nodes with > 2 children.)
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Example of Red-Black Insertion (II)

• Insert 27, recolor to restore red-black property. Doesn’t do any
rebalancing, but sets things up to cause future insertions to rebal-
ance.

• In corresponding (2,4) tree, this recoloring splits nodes (adds extra
black nodes). We don’t have to recolor the root to red, as we did
25, because we are increasing the height of this (2,4) tree.

5 10 20 30 40 50

7 25

15

45

35

27

5 10 20 30 40 50

7 25

15

45

35
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Example of Red-Black Insertion (II)

• Insert 27, recolor to restore red-black property. Doesn’t do any
rebalancing, but sets things up to cause future insertions to rebal-
ance.

• In corresponding (2,4) tree, this recoloring splits nodes (adds extra
black nodes). We don’t have to recolor the root to red, as we did
25, because we are increasing the height of this (2,4) tree.

5 10 20 30 40 50

7 25

15

45
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5 10 20 30 40 50

7 25

15

45

35
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Really Efficient Use of Keys: the Trie

• Have been silent about cost of comparisons.

• For strings, worst case is length of string.

• Therefore should throw extra factor of key length, L, into costs:

– Θ(M) comparisons really means Θ(ML) operations.

– So to look for key X , keep looking at same chars of X M times.

• Can we do better? Can we get search cost to be O(L)?

Idea: Make a multi-way decision tree, with one decision per character
of key.
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The Trie: Example

• Set of keys

{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet}

• Ticked lines show paths followed for “abash” and “fabric”

• Each internal node corresponds to a possible prefix.

• Characters in path to node = that prefix.

a

a
2

a2

b

ab
a

aba
s

abas
e

abase2

h

abash2

t

abate2

b

abbas2

x

ax
e

axe2

o

axolotl2

f

f

a

fa
b

fabric2

c

facet2
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Adding Item to a Trie

• Result of adding bat and faceplate.

• New edges ticked.

a

a
2

a2

b

ab
a

aba
s

abas
e

abase2

h

abash2

t

abate2

b

abbas2

x

ax
e

axe2

o

axolotl2

b

bat2

f

f

a

fa
b

fabric2

c

fac

e

face
p

faceplate2

t

facet2

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 15



A Side-Trip: Scrunching

• For speed, obvious implementation for internal nodes is array in-
dexed by character.

• Gives O(L) performance, L length of search key.

• [Looks as if independent of N , number of keys. Is there a depen-
dence?]

• Problem: arrays are sparsely populated by non-null values—waste of
space.

Idea: Put the arrays on top of each other!

• Use null (0, empty) entries of one array to hold non-null elements of
another.

• Use extra markers to tell which entries belong to which array.
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Scrunching Example

Small example: (unrelated to Tries on preceding slides)

• Three leaf arrays, each indexed 0..9

A1:

bass trout pike

A2:

ghee milk oil

A3:

salt cumin mace

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

• Now overlay them, but keep track of original index of each item:

A123:

bass

salt
ghee

trout

cumin

pike
milk oil

mace

0 -1 1 -1 2 5 5 7 6 7 9

A1: 0* 1 2 3 4 5* 6 7* 8 9

A2: 0 1 2* 3 4 5 6* 7* 8 9

A3: 0 1* 2 3 4 5* 6 7 8 9*
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Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓
⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓
⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓
⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Wed Oct 31 14:50:53 2012 CS61B: Lecture #29 18



Example: Adding and deleting

• Starting from initial list:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

• In any order, we add 126 and 127 (choosing random heights for
them), and remove 20 and 40:

−∞
0

1

2

3

10 25 30 50 55 60 90 95 100 115 120 125 126 127 130 140 150 ∞

• Shaded nodes here have been modified.
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Summary

• Balance in search trees allows us to realize Θ(lg N) performance.

• B-trees, red-black trees:

– Give Θ(lg N) performance for searches, insertions, deletions.

– B-trees good for external storage. Large nodes minimize # of
I/O operations

• Tries:

– Give Θ(B) performance for searches, insertions, and deletions,
where B is length of key being processed.

– But hard to manage space efficiently.

• Interesting idea: scrunched arrays share space.

• Skip lists:

– Give probable Θ(lg N) performace for searches, insertions, dele-
tions

– Easy to implement.

– Presented for interesting ideas: probabilistic balance, random-
ized data structures.
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