CS61B Lectures #27-28

Today:
e Sorting algorithms: why?
e Insertion, Shell's, Heap, Merge sorts
e Quicksort
e Selection

e Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 1

Purposes of Sorting

e Sorting supports searching
e Binary search standard example
e Also supports other kinds of search:

- Are there two equal items in this set?

- Are there two items in this set that both have the same value for
property X?

- What are my nearest neighbors?

e Used in numerous unexpected algorithms, such as convex hull (small-
est convex polygon enclosing set of points).

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 2

Some Definitions

e A sort is a permutation (re-arrangement) of a sequence of elements
that brings them into order, according to some total order. A total
order, <, is:

-Total: x <yory <z forall z,y.

- Reflexive: = < z;

- Antisymmetric: © <yand y <z iff z = y.
- Transitive: © < yand y < z implies z < 2.

e However, our orderings may allow unequal items to be equivalent:

- E.g., can be two dictionary definitions for the same word: if en-

tries sorted only by word, then sorting could put either entry
first.

- A sort that does not change the relative order of equivalent en-
tries is called stable.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 3

Classifications

e Internal sorts keep all data in primary memory

e External sorts process large amounts of data in batches, keeping
what won't fit in secondary storage (in the old days, tapes).

e Comparison-based sorting assumes only thing we know about keys is
order

e Radix sorting uses more information about key structure.

e Insertion sorting works by repeatedly inserting items at their ap-
propriate positions in the sorted sequence being constructed.

e Selection sorting works by repeatedly selecting the next larger
(smaller) item in order and adding it one end of the sorted sequence
being constructed.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 4

Sorting by Insertion

e Simple idea:
- starting with empty sequence of outputs.

- add each item from input, inserting into output sequence at right
point.

e Very simple, good for small sets of data.

e With vector or linked list, time for find + insert of one item is at
worst O(k), where k is # of outputs so far.

e So gives us O(N?) algorithm. Can we say more?

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 5

Inversions

e Can run in O(N) comparisons if already sorted.
e Consider a typical implementation for arrays:

for (int i = 1; i < A.length; i += 1) {
int j;
Object x = A[i];
for (j =i-1; j>=0; j —=1) {
if (A[j].compareTo (x) <= 0) /x (1) */
break;
A[j+11 = A[3];
3
Alj+1] = x;
¥

e #times (1) executes ~ how far x must move.
e If all items within K of proper places, then takes O(K N) operations.
e Thus good for any amount of nearly sorted data.

e One measure of unsortedness: # of inversions: pairs that are out
of order (= O when sorted, N(N — 1)/2 when reversed).

e Each step of j decreases inversions by 1.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 6

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

e First sort subsequences of elements 2¢ — 1 apart:
- sort items #0, 28 — 1, 2(2" — 1), 3(2* — 1), ..., then
-sortitems #1, 1+2F -1, 1+2(28 - 1), 1+3(2¥-1), ..., then
-sortitems #2, 2+2F — 1, 2+2(2" - 1), 2+3(2* = 1), ..., then
- efc.
- sort items #2F —2 2028 — 1) — 1, 3(2F —1) -1, ...,
- Each time an item moves, can reduce #inversions by as much as

2k 41,

e Now sort subsequences of elements 2"~! — 1 apart:
- sort items #0, 2"=1 — 1, 2(2"1 — 1), 3(2"' —1), ..., then
-sortitems #1, 1 +281 — 1, 14221 —1), 14321 —1), ...

e End at plain insertion sort (2° = 1 apart), but with most inversions
gone.

e Sort is O(N'?) (take €S170 for why!).

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 7

Example of Shell's Sort

[15[14[13]12]11[10[9[8 [7]6[5[4[3]2]1]0]

[0[7]e]5]4]3]2]1]14]13[12]11[10]9[8]15]

[0[1]3]2]4]6]5]7[8]10]9]11]13]12]14]15]

[0[1]2]3]4][5]6]7[8]9]t0]11]12]13]14]15]
I: Inversions left.
C: Comparisons needed to sort subsequences.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 8

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.
e Really bad idea on a simple list or vector.
e But we've already seen it in action: use heap.
e Gives O(N lg N) algorithm (/N remove-first operations).

e Since we remove items from end of heap, we can use that area to
accumulate result:

original: [19] 0 [-1]7 [23] 2 [42]
heapified: [42]23[19]7 [0 [2 [-1]
(23] 7[19]-1]0] 2]
[19[7]2]-1]0] [23]42]
‘7‘0‘2‘—1‘ ‘19‘23‘42‘
[2]0]-1] [7]19]23]42]

‘O‘—l‘ ‘2‘7‘19‘23‘42‘

[0[2]7]19]23]42]

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 9

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge re-
sults.

e Already seen analysis: ©(N Ig N).
e Good for external sorting:

- First break data into small enough chunks to fit in memory and
sort.

- Then repeatedly merge into bigger and bigger sequences.

- Can merge K sequences of arbitrary size on secondary storage
using O(K) storage.

e For internal sorting, can use binomial comb to orchestrate:

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 10

Illustration of Internal Merge Sort

L:(9,15,5,3,0,6,10,-1, 2, 20, 8)

0 elements processed
I ot (9) JUN 0: e}~ (5)
.10 : (9, 15) : = (9, 15)
10 : :
0

1 element processed 2 elements processed 3 elements processed

0 ‘U e~ (8)
:0 : L~ (0, 6) T o= (2, 20)
EH (3,5, 9,15) : - (3, 5,9, 15) Ho

4 elements processed elements processed 11 elements processed

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 11

‘[eJ~ (-1,0,3,5,6,9,10, 15)

Quicksort: Speed through Probability

Idea:

e Partition data into pieces: everything > a pivot value at the high
end of the sequence to be sorted, and everything < on the low end.

e Repeat recursively on the high and low pieces.

e For speed, stop when pieces are "small enough” and do insertion sort
on the whole thing.

e Reason: insertion sort has low constant factors. By design, no item
will move out of its will move out of its piece [why?], so when pieces
are small, #inversions is, too.

e Have to choose pivot well. E.g.. median of first, last and middle
items of sequence.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 12

Example of Quicksort

e In this example, we continue until pieces are size < 4.

e Pivots for next step are starred. Arrange to move pivot to dividing
line each time.

o Last step is insertion sort.

[16]10]13]18]-4[-7[12]-5[19]15] 0 [22]29]34[-1*|
[-4]-5]-7][-1]|[18]13]12]10]19[15] O [22]29]34]16*]
[-4]-5]-7][-1][15]13]12*[10] 0 |[16][19*[22]29]34] 18]
[-4]-5]-7][-1][10] 0 |[12][15]13]|[16 || 18][19][29]34]22]

e Now everything is "close to" right, so just do insertion sort:

[7]5]-4[-1]0 [10]12[13] 15|16 18] 19]22]29]34]

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 13

Performance of Quicksort

e Probabalistic time:
- If choice of pivots good, divide data in two each time: ©(Nlg N)
with a good constant factor relative to merge or heap sort.
- If choice of pivots bad, most items on one side each time: O(N?).
-Q(NIgN) in best case, so insertion sort better for nearly or-
dered input sets.

e Interesting point: randomly shuffling the data before sorting makes
Q(N?) time very unlikely!

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 14

Quick Selection

The Selection Problem: for given k, find kth smallest element in data.

e Obvious method: sort, select element #k, time O(N g N).
e If i < some constant, can easily do in ©O(N) time:

- Go through array, keep smallest & items.
e Get probably ©(N) time for all k by adapting quicksort:

- Partition around some pivot, p, as in quicksort, arrange that pivot
ends up at dividing line.

- Suppose that in the result, pivot is at index m, all elements <
pivot have indicies < m.

- If m =k, you're done: p is answer.
- If m > k, recursively select 1T from left half of sequence.

-If m < k, recursively select (k — m — 1)1'h from right half of
sequence.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 15

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:
[51]60]21[-4[37] 4 [49]10]40%59] 0 [13] 2 [39]11[46] 31]
0

Looking for #10 to left of pivot 40:
[13]31]21[-4[37[4*[11]10[39] 2 | 0 |[40][59]51[49]46]60]
0

Looking for #6 to right of pivot 4:
[-4]0[2][4]|[37]13]11[10[39]21[31*| 40][59]51]49]4660]
4

Looking for #1 to right of pivot 31:

[-4]0]2][4][21]13]11]10][31][39]37][40][59]51[49]46]60]
9

Just two elements; just sort and return #1:

[-4]0 [2][4]|[21][13]11]10]|31][37[39][40][59]51[49]46]60]
9

Result: 39

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 16

Selection Performance

e For this algorithm, if m roughly in middle each time, cost is

1, if N =1,
CN) = N + C(N/2), otherwise.
= N+N/2+...+1

= 2N — 1€ O(N)

e But in worst case, get ©(N?), as for quicksort.

e By another, non-obvious algorithm, can get ©(N) worst-case time
for all k (take CS170).

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 17

Better than N Ig N?

e Can prove that if all you can do to keys is compare them then sorting
must take Q(Nlg N).

e Basic idea: there are N! possible ways the input data could be
scrambled.

e Therefore, your program must be prepared to do N! different com-
binations of move operations.

e Therefore, there must be N! possible combinations of outcomes of
all the if tests in your program (we're assuming that comparisons are
2-way).

e Since each if test goes two ways, number of possible different out-
comes for k if tests is 2*.
e Thus, need enough tests so that 2¥ > N!, which means & € Q(lg N!).

e Using Stirling's approximation,

m! € vV2rm (T)m (1 +0O (i)) ,
e m
this tells us that

k€ Q(NIgN).

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 18

Beyond Comparison: Distribution Counting

e But suppose can do more than compare keys?

e For example, how can we sort a set of NV integer keys whose values
range from O to kN, for some small constant £?

e One technique: count the number of items < 1, < 2, etc.

o If M, =#items with value < p, then in sorted order, the jTh item
with value p must be #M, + j.

e Gives linear-time algorithm.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 19

Distribution Counting Example

e Suppose all items are between O and 9 as in this example:

([7]of4]0f9f1]9]1][9]5]3]7[3[1]6][7[4][2]0

(3]3]1]2]2[]1[1][3]0]3]CcCounts

0 1 2 3 4 5 6 7 8 9
{0 3]6 7 9 [1]12]13]16 | 16 | Runningsum
<0 <1 <2 <3 <4 <5 <6 <7 <8 <9

[0Jofol1]1]1]2]3[3[4[4[5[6[7[7][7]9]9]9]
0 3 9 11 12 13 16

e "Counts" line gives # occurrences of each key.
e "Running sum" gives cumulative count of keys < each value...
e ... which tells us where to put each key:

e The first instance of key k goes into slot m, where m is the number
of key instances that are < k.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 20

Radix Sort

Idea: Sort keys one character at a time.
e Can use distribution counting for each digit.

e Can work either right to left (LSD radix sort) or left to right (MSD
radix sort)

¢ LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

bet
Pass 1 o oot St
ass a cat le
(by char #2) can cat Pass 2 can set
y char be cad con set (by char #1) cad be con
O o e e
be, cad, con, can, set, cat, bat, let, bet cad, can, cat, bat, be, set, let, bet, con

bet car
et ca
Pass 3 be can
(by char #0) bat cad let set
b e e
bat, be, bet, cad, can, cat, con, let, set

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 21

MSD Radix Sort

e A bit more complicated: must keep lists from each step separate

e But, can stop processing 1-element lists

A
* set, cat, cad, con, bat, can, be, let, bet
* bat, be, bet / cat, cad, con, can / let / set
bat / « be, bet / cat, cad, con, can / let / set
bat / be / bet / x cat, cad, con, can / let / set
bat / be / bet / x cat, cad, can / con / let / set
bat / be / bet / cad / can / cat / con / let / set

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 22

Performance of Radix Sort

e Radix sort takes O(B) time where B is total size of the key data.
e Have measured other sorts as function of #records.
e How to compare?

e To have N different records, must have keys at least ©(Ig V) long
[why?]

e Furthermore, comparison actually takes time ©(K) where K is size
of key in worst case [why?]

e So Nlg N comparisons really means N(lg N)* operations.
e While radix sort takes B = Nlg N time.

e On the other hand, must work to get good constant factors with
radix sort.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 23

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

e Need balance to really use for sorting [next topic].

e Given balance, same performance as heapsort: N insertions in time
lg N each, plus ©(N) to traverse, gives

O(N + NlgN) = O(NIgN)

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 24

Summary

e Insertion sort: ©(Nk) comparisons and moves, where k is maximum
amount data is displaced from final position.

- Good for small datasets or almost ordered data sets.

e Quicksort: ©(N lg N) with good constant factor if data is not patho-
logical. Worst case O(N?).

e Merge sort: O(N lg N) guaranteed. Good for external sorting.
e Heapsort, freesort with guaranteed balance: ©(N lg N) guaranteed.

e Radix sort, distribution sort: O(B) (number of bytes). Also good for
external sorting.

Last modified: Fri Oct 26 14:54:35 2012 CS61B: Lectures #27-28 25

	CS61B Lectures #27--28
	Purposes of Sorting
	Some Definitions
	Classifications
	Sorting by Insertion
	Inversions
	Shell's sort
	Example of Shell's Sort
	Sorting by Selection: Heapsort
	Merge Sorting
	Illustration of Internal Merge Sort
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance
	Better than N lg N?
	Beyond Comparison: Distribution Counting
	Distribution Counting Example
	Radix Sort
	MSD Radix Sort
	Performance of Radix Sort
	And Don't Forget Search Trees
	Summary

