
CS61B Lecture #23

Today: Backtracking searches, game trees (DSIJ, Section 6.5)

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 1

Searching by “Generate and Test”

• We’ve been considering the problem of searching a set of data stored
in some kind of data structure: “Is x ∈ S?”

• But suppose we don’t have a set S, but know how to recognize what
we’re after if we find it: “Is there an x such that P (x)?”

• If we know how to enumerate all possible candidates, can use ap-
proach of Generate and Test: test all possibilities in turn.

• Can sometimes be more clever: avoid trying things that won’t work,
for example.

• What happens if the set of possible candidates is infinite?

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 2

Backtracking Search

• Backtracking search is one way to enumerate all possibilities.

• Example: Knight’s Tour. Find all paths a knight can travel on a chess-
board such that it touches every square exactly once and ends up
one knight move from where it started.

• In the example below, the numbers indicate position numbers (knight
starts at 0).

• Here, knight (N) is stuck; how to handle this?

6

5

4 7

10 2

8 3 0

N 9 1

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 3

General Recursive Algorithm

/** Append to PATH a sequence of knight moves starting at ROW, COL

* that avoids all squares that have been hit already and

* that ends up one square away from ENDROW, ENDCOL. B[i][j] is

* true iff row i and column j have been hit on PATH so far.

* Returns true if it succeeds, else false (with no change to PATH).

* Call initially with PATH containing the starting square, and

* the starting square (only) marked in B. */

boolean findPath (boolean[][] b, int row, int col,

int endRow, int endCol, List path) {

if (path.size () == 64) return isKnightMove (row, col, endRow, endCol);

for (r, c = all possible moves from (row, col)) {

if (! b[r][c]) {

b[r][c] = true; // Mark the square

path.add (new Move (r, c));

if (findPath (b, r, c, endRow, endCol, path)) return true;

b[r][c] = false; // Backtrack out of the move.

path.remove (path.size ()-1);

}

}

return false;

}

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 4

Another Kind of Search: Best Move

• Consider the problem of finding the best move in a two-person game.

• One way: assign a value to each possible move and pick highest.

– Example: number of our pieces - number of opponent’s pieces.

• But this is misleading. A move might give us more pieces, but set up
a devastating response from the opponent.

• So, for each move, look at opponent’s possible moves, assume he
picks the best one for him, and use that as the value.

• But what if you have a great response to his response?

• How do we organize this sensibly?

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 5

Game Trees, Minimax

• Think of the space of possible continuations of the game as a tree.

• Each node is a position, each edge a move.

-5

-5 -20

-5 15 -20 10

-30 -5 5 15 -20 -30 9 10

*

*

* * * *

*

My move

Opponent’s move

My move

Opponent’s move

• Numbers are the values we guess for the positions (larger means
better for me). Starred nodes would be chosen.

• I always choose child (next position) with maximum value; opponent
chooses minimum value (“Minimax algorithm”)

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 6

Alpha-Beta Pruning

• We can prune this tree as we search it.

-5

-5 ≤-20

-5 ≥5
-20

-30 -5 5
-20 -30

*

*

*
*

*

My move

Opponent’s move

My move

Opponent’s move

• At the ‘≥ 5’ position, I know that the opponent will not choose to
move here (since he already has a −5 move).

• At the ‘≤ −20’ position, my opponent knows that I will never choose
to move here (since I already have a −5 move).

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 7

Cutting off the Search

• If you could traverse game tree to the bottom, you’d be able to
force a win (if it’s possible).

• Sometimes possible near the end of a game.

• Unfortunately, game trees tend to be either infinite or impossibly
large.

• So, we choose a maximum depth, and use a heuristic value computed
on the position alone (called a static valuation) as the value at that
depth.

• Or we might use iterative deepening (kind of breadth-first search),
and repeat the search at increasing depths until time is up.

• Much more sophisticated searches are possible, however (take CS188).

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 8

Some Pseudocode for Searching

/** A legal move for WHO that either has an estimated value >= CUTOFF

* or that has the best estimated value for player WHO, starting from

* position START, and looking up to DEPTH moves ahead. */

Move findBestMove (Player who, Position start, int depth, double cutoff)

{

if (start is a won position for who) return WON_GAME; /* Value ∞ */

else if (start is a lost position for who) return LOST_GAME; /* Value −∞ */

else if (depth == 0) return guessBestMove (who, start, cutoff);

Move bestSoFar = REALLY_BAD_MOVE;

for (each legal move, M, for who from position start) {

Position next = start.makeMove (M);

Move response = findBestMove (who.opponent (), next,

depth-1, -bestSoFar.value ());

if (-response.value () > bestSoFar.value ()) {

Set M’s value to -response.value (); // Value for who = - Value for opponent
bestSoFar = M;

if (M.value () >= cutoff) break;

}

}

return bestSoFar;

}

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 9

Static Evaluation

• This leaves static evaluation, which looks just at the next possible
move:

Move guessBestMove (Player who, Position start, double cutoff)

{

Move bestSoFar;

bestSoFar = Move.REALLY_BAD_MOVE;

for (each legal move, M, for who from position start) {

Position next = start.makeMove (M);

Set M’s value to heuristic guess of value to who of next;

if (M.value () > bestSoFar.value ()) {

bestSoFar = M;

if (M.value () >= cutoff)

break;

}

}

return bestSoFar;

}

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 10

	CS61B Lecture #23
	Searching by ``Generate and Test''
	Backtracking Search
	General Recursive Algorithm
	Another Kind of Search: Best Move
	Game Trees, Minimax
	Alpha-Beta Pruning
	Cutting off the Search
	Some Pseudocode for Searching
	Static Evaluation

