CS61B Lecture #17 Topics

Administrative: e Overview of standard Java Collections classes.
¢ Need alternative test time? Make sure you send me mail. - Iterators, ListIterators

e Monday: TAs will conduct a review. There will also be a review ses- - Containers and maps in the abstract
sion on Sunday (see Piazzza). - Views

e HKN will be holding a review session this weekend for the upcoming e Generic Implementation
CS61B test. Place: HP Auditorium (306 Soda). Time: Saturday
October 6, 4-6PM.

e OccupyWoz:

"Come to Wozniak Lounge anytime from 1000 Saturday (10/6) . .
to 1300 Sunday (10/7) to camp out against stress and lack of o Circular buffering
food. For more than 30 hours, Woz will be the stress-free, e Recursion and stacks
food-ful haven you've always dreamed of, filled with acclaimed
HKN tutors sporting pillows, study groups for all your EECS
classes (CS61A, CS61B, and CS61C especially).” Readings: Data Structures, Chapter 2, 3 (for today), and 4 (Friday).

e Array vs. linked: tradeoffs
e Sentinels

e Specialized sequences: stacks, queues, deques

e Adapters

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 1 Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 2

Data Types in the Abstract Collection Structures in java.util

e Most of the time, should not worry about implementation of data
structures, search, etc.

e What they do for us—their specification—is important.

e Java has several standard types (in java.util) to represent collec-
tions of objects

- Six interfaces:
* Collection: General collections of items. : \ . .
* List: Indexed sequences with duplication LinkedList ArrayList TreeSet
* Set, SortedSet: Collections without duplication
* Map, SortedMap: Dictionaries (key — value)

- Concrete classes that provide actual instances: LinkedList, ArrayList,
HashSet, TreeSet.

- To make change easier, purists would use the concrete types only - class
for new, interfaces for parameter types, local variables. HashMap| | WeakHashMap | | TreeMap

—: extends
---»1 implements

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 3 Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 4

The Collection Interface

e Collection interface. Main functions promised:
- Membership tests: contains (€), containsAll (C)
- Other queries: size, isEmpty
- Retrieval: iterator, toArray
- Optional modifiers: add, addAll, clear, remove, removeAll (set
difference), retainAll (intersect)
e Design point (a side trip): Optional operations may throw

UnsupportedOperationException

e An alternative design would have separate interfaces:

interface Collection { contains, containsAll, size, iterator, ...
interface Expandable { add, addAll }
interface Shrinkable { remove, removeAll, difference, ... }
interface ModifiableCollection

extends Collection, Expandable, Shrinkable { }

You'd soon have lots of interfaces. Perhaps that's why they didn't
do it that way.)

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 5

The List Interface

e Extends Collection
e Intended to represent indexed sequences (generalized arrays)
e Adds new methods to those of Collection:

- Membership tests: index0f, lastIndexOf.
- Retrieval: get (i), listIterator(), sublist(B, F).

- Modifiers: add and addA11 with additional index to say where to
add. Likewise for removal operations. set operation to go with
get.

. Type ListIterator<Item> extends Iterator<Item>:

- Adds previous and hasPrevious.

- add, remove, and set allow one to iterate through a list, inserting,
removing, or changing as you go.

- Important Question: What advantage is there fo saying List L
rather than LinkedList L or ArrayList L?

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 6

Views

New Concept: A view is an alternative presentation of (interface to)
an existing object.

e For example, the sublist method is supposed to yield a "view of"

L:

List<String> L = new ArrayList<String>();
L.add ("at"); L.add("ax"); ...
List<String> SL = L.sublist (1,4);

SL:

e Example: after L.set(2, "bag"), value of SL.get(1) is "bag", and
after SL.set(1,"bad"), value of L.get(2) is "bad".

e Example: after SL.clear (), L will contain only "at" and "cat".
e Small challenge: "How do they do that?!"

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 7

Maps

e A Map is a kind of "modifiable function:"

package java.util;
public interface Map<Key,Value> {
Value get (Object key); // Value at KEY.
Object put (Key key, Value value); // Set get(KEY) -> VALUE

Map<String,String> f = new TreeMap<String,String> (O);
f.put ("Paul", "George"); f.put ("George", "Martin");
f.put ("Dana", "John");

// Now f.get ("Paul").equals ("George")

// f.get ("Dana").equals ("John")

// f.get ("Tom") == null

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17

Map Views

public interface Map<Key,Value> { // Continuation
/* VIEWS */

/*x The set of all keys. */
Set<Key> keySet ();
/**% The multiset of all values */
Collection<Value> values ();
/** The set of all (key, value) pairs */
Set<Map.Entry<Key,Value>> entrySet ();

}

Using example from previous slide:

for (Iterator<String> i = f.keySet ().iterator (); i.hasNext ();)
i.next () ===> Dana, George, Paul

// or, just:

for (String name : f.keySet ())
name ===> Dana, George, Paul

for (String parent : f.values ())

parent ===> John, Martin, George
for (Map.Entry<String,String> pair : f.entrySet ())

pair ===> (Dana,John), (George,Martin), (Paul,George)
f.keySet ().remove ("Dana"); // Now f.get("Dana") == null

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 9

Simple Banking I: Accounts

Problem: Want a simple banking system. Can look up accounts by name
or number, deposit or withdraw, print.

Account Structure

class Account {

Account (String name, String number, int init) {
this.name = name; this.number = number;
this.balance = init;

}

/** Account-holder’s name */

final String name;

/** Account number */

final String number;

/** Current balance */

int balance;

/**% Print THIS on STR in some useful format.
void print (PrintWriter str) { ... }

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 10

Simple Banking II: Banks

class Bank {
/* These variables maintain mappings of String -> Account. They keep
* the set of keys (Strings) in "compareTo" order, and the set of
*x values (Accounts) is ordered according to the corresponding keys. */
SortedMap<String,Account> accounts = new TreeMap<String,Account> ();
SortedMap<String,Account> names = new TreeMap<String,Account> ();

void openAccount (String name, int initBalance) {
Account acc =
new Account (name, chooseNumber (), initBalance);
accounts.put (acc.number, acc);
names.put (name, acc);

void deposit (String number, int amount) {
Account acc = accounts.get (number);
if (acc == null) ERROR(...);
acc.balance += amount;

}

// Likewise for withdraw.

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 11

Banks (continued): Iterating

Printing out Account Data

/*x Print out all accounts sorted by number on STR. */
void printByAccount (PrintStream str) {
// accounts.values () is the set of mapped-to values. Its
// iterator produces elements in order of the corresponding keys.
for (Account account : accounts.values ())
account.print (str);

/*x Print out all bank acconts sorted by name on STR. */
void printByName (PrintStream str) {
for (Account account : names.values ())
account.print (str);

A Design Question: What would be an appropriate representation for
keeping a record of all fransactions (deposits and withdrawals) against
each account?

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 12

Partial Implementations

e Besides interfaces (like List) and concrete types (like LinkedList),
Java library provides abstract classes such as AbstractList.

e Idea is to take advantage of the fact that operations are related to
each other.

e Example: once you know how to do get (k) and size() for an imple-
mentation of List, you can implement all the other methods needed
for a read-only list (and its iterators).

e Now throw in add (k,x) and you have all you need for the additional
operations of a growable list.

e Add set (k,x) and remove (k) and you can implement everything else.

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 13

Example: The java.util. Abstractlist helper class

public abstract class AbstractList<Item> implements List<Item> {
/** Inherited from List */
// public abstract int size ();
// public abstract Item get (int k);
public boolean contains (Object x) {
for (int i = 0; i < size O); i +=1) {
if ((x == null && get (i) == null) ||
(x !'= null && x.equals (get (i))))
return true;
}
return false;
}
/* OPTIONAL: By default, throw exception; override to do more. */
void add (int k, Item x) {
throw new UnsupportedOperationException ();
}
Likewise for remove, set

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 14

Example, continued: AListIterator

// Continuing abstract class AbstractList<Item>:
public Iterator<Item> iterator () { return listIterator (); }
public ListIterator<Item> listIterator () { return new AListIterator (this); }

private static class AListIterator implements ListIterator<Item> {
AbstractList<Item> myList;
AlistIterator (AbstractList<Item> L) { myList = L; }
/** Current position in our list. */
int where = 0;

public boolean hasNext () { return where < myList.size (); }
public Item next () { where += 1; return myList.get (where-1); }
public void add (Item x) { myList.add (where, x); where += 1; }
... previous, remove, set, etc.

}

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 15

Example: Using AbstractList

Problem: Want to create a reversed view of an existing List (same
elements in reverse order).

public class ReverselList<Item> extends AbstractList<Item> {
private final List<Item> L;

public ReverseList (List<Item> L) { this.L =1L; }
public int size () { return L.size (); }
public Item get (int k) { return L.get (L.size ()-k-1); }

public void add (int k, Item x)
{ L.add (L.size O-k, x); }

public Item set (int k, Item x)
{ return L.set (L.size ()-k-1, x); }

public Item remove (int k)
{ return L.remove (L.size () - k - 1); }

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 16

Aside: Another way to do AListIterator Getting a View: Sublists

It's also possible to make the nested class non-static: Problem: L.sublist(start, end) is a full-blown List that gives a
public Iterator<Item> iterator () { return listIterator (); } view of part of an existing list. Changes in one must affect the other.
public ListIterator<Item> listIterator () { return this.new AListIterator (); } How? Here's part of AbstractList:

List<Item> sublist (int start, int end) {

rivate class AListIterator implements ListIterator<Item> . .
P P { return new this.Sublist (start, end);

/** Current position in our list. */ }
int where = 0;

private class Sublist extends AbstractList<Item> {
// NOTE: Error checks not shown
private int start, end;
Sublist (int start, int end) { obvious }

public boolean hasNext () { return where < AbstractlList.this.size (); }
public Item next () { where += 1; return AbstractList.this.get (where-1); }
public void add (Item x) { AbstractList.this.add (where, x); where += 1; }
... previous, remove, set, etc.

}

public int size () { return end-start; }

public Item get (int k)
e Here, AbstractList.this means "the AbstractList I am attached { return AbstractList.this.get (start+k); }
to" and X .new AListIterator means “create a new AListIterator

that is attached 10 X." public void add (int k, Item x) {
{ AbstractList.this.add (start+k, x); end += 1; }

e In this case you can abbreviate this.new as new and can leave of f o
the AbstractList.this parts, since meaning is unambiguous. }

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #1717 Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 18

What Does a Sublist Look Like? Arrays and Links

e Consider SL = L.sublist (3, 5); e Two main ways fo represent a sequence: array and linked list

e In Java Library: ArrayList and Vector vs. LinkedList.

List e Array:
object - Advantages: compact, fast (O(1)) random access (indexing).
- Disadvantages: insertion, deletion can be slow (©(XV))
e Linked list:
- Advantages: insertion, deletion fast once position found.
- Disadvantages: space (link overhead), random access slow.

AbstractList.this

start: 3

end: 5

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #1719 Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #1720

Implementing with Arrays

e Biggest problem using arrays is insertion/deletion in the middle of a
list (must shove things over).

e Adding/deleting from ends can be made fast:

- Double array size to grow; amortized cost constant (Lecture #15).

- Growth at one end really easy: classical stack implementation:

add here

A —]
size: 3

Xyz
- To allow growth at either end, use circular buffering:

add here

! !
last first
- Random access still fast.

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 21

Linking

e Essentials of linking should now be familiar

e Used in Java LinkedList. One possible representation for linked
list and an iterator object over it:

L:[]

LinkedList.this

I:B—»
lastReturned
here
nextIndex
a B

B0

A

5]

sentinel’
axolotl kludge xerophyte

L = new LinkedList<String>();
L.add("axolotl");
L.add("kludge");
L.add("xerophyte") ;
I = L.listIterator();
Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #1722

I.next();

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #1723

Clever trick: Sentinels

e A sentinel is a dummy object containing no useful data except links.

e Used to eliminate special cases and to provide a fixed object to
point to in order to access a data structure.

e Avoids special cases ('if' statements) by ensuring that the first and
last item of a list always have (non-null) nodes—possibly sentinels—
before and after them:

® // To delete list node at p: // To add new node N before p:

p.next.prev = p.prev; N.prev = p.prev; N.next = p;

p.prev.next = p.next; p.prev.next = N;
p.prev = N;

Tnitially p: G~ ELFE £~
p: B@@ p:

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 24

Specialization

e Traditional special cases of general list:
- Stack: Add and delete from one end (LIFO).
- Queue: Add at end, delete from front (FIFO).
- Dequeue: Add or delete at either end.

e All of these easily representable by either array (with circular buffer-
ing for queue or deque) or linked list.

e Java has the List types, which can act like any of these (although
with non-traditional names for some of the operations).

e Also has java.util.Stack, a subtype of List, which gives tradi-
tional names ("push”, "pop") to its operations. There is, however, no
"stack” interface.

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 25

Stacks and Recursion

e Stacks related to recursion. In fact, can convert any recursive al-
gorithm to stack-based (however, generally no great performance
benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes “pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (! isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legalPlace(x) else if (! isCrumb(start))
findExit (x) leave crumb at start;
for each square, x,

Call: findExit(0) 218 910 adjacent to start (in reverse):
Exit: 16 13[4]7 15 1617 if legalPlace(x)
143

6 push x on S
125

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #17 26

Design Choices: Extension, Delegation, Adaptation

e The standard java.util.Stack type extends Vector:

class Stack<Item> extends Vector<Item> { void push (Item x) { add (x); } ...

e Could instead have delegated to a field:

class ArrayStack<Item> {
private ArrayList<Item> repl = new ArrayList<Item> ();
void push (Item x) { repl.add (x); } ...

}

e Or, could generalize, and define an adapter: a class used to make
objects of one kind behave as another:

public class StackAdapter<Item> {
private List repl;
/** A stack that uses REPL for its storage. */
public StackAdapter (List<Item> repl) { this.repl = repl; }
public void push (Item x) { repl.add (x); } ...

class ArrayStack<Item> extends StackAdapter<Item> {

ArrayStack () { super (new ArrayList<Item> ()); }
}

Last modified: Fri Oct 5 16:34:50 2012 CS61B: Lecture #1727

	CS61B Lecture #17
	Topics
	Data Types in the Abstract
	Collection Structures in java.util
	The Collection Interface
	The List Interface
	Views
	Maps
	Map Views
	Simple Banking I: Accounts
	Simple Banking II: Banks
	Banks (continued): Iterating
	Partial Implementations
	Example: The java.util.AbstractList helper class
	Example, continued: AListIterator
	Example: Using AbstractList
	Aside: Another way to do AListIterator
	Getting a View: Sublists
	What Does a Sublist Look Like?
	Arrays and Links
	Implementing with Arrays
	Linking
	Clever trick: Sentinels
	Specialization
	Stacks and Recursion
	Design Choices: Extension, Delegation, Adaptation

