
CS61B Lecture #11: Examples: Comparable & Reader

• Java library provides an interface to describe Objects that have
a natural order on them, such as String, Integer, BigInteger and
BigDecimal:

public interface Comparable { // For now, the Java 1.4 version

/** Returns value <0, == 0, or > 0 depending on whether

* THIS is <, ==, or > OBJ. Exception if OBJ not of compatible type. */

int compareTo(Object obj);

}

• Might use in a general-purpose max function:

/** The largest value in array A, or null if A empty. */

public static Comparable max(Comparable[] A) {

if (A.length == 0) return null;

Comparable result; result = A[0];

for (int i = 1; i < A.length; i += 1)

if (result.compareTo(A[i]) < 0) result = A[i];

return result;

}

• Now max(S) will return maximum value in S if S is an array of Strings,
or any other kind of Object that implements Comparable.

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 1

Examples: Implementing Comparable

/** A class representing a sequence of ints. */

class IntSequence implements Comparable {

private int[] myValues;

private int myCount;

...

public int get(int k) { return myValues[k]; }

@Override

public int compareTo(Object obj) {

IntSequence x = (IntSequence) obj; // Blows up if incomparable

for (int i = 0; i < myCount && i < x.myCount; i += 1)

if (myValues[i] < x.myValues[i])

return -1;

else if (myValues[i] > x.myValues[i])

return 1;

return myCount - x.myCount; // Umm. A bit tricky

}

}

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 2

Implementing Comparable II

• Also possible to add an interface retroactively.

• If IntSequence did not implement Comparable, but did implement
compareTo (without @Override), we could write

class ComparableIntSequence extends IntSequence implements Comparable {

}

• Java would then “match up” the compareTo in IntSequence with that
in Comparable.

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 3

Example: Readers

• Java class java.io.Reader abstracts sources of characters.

• Here, we present a revisionist version (not the real thing):

public interface Reader { // Real java.io.Reader is abstract class

/** Release this stream: further reads are illegal */

void close();

/** Read as many characters as possible, up to LEN,

* into BUF[OFF], BUF[OFF+1],..., and return the

* number read, or -1 if at end-of-stream. */

int read(char[] buf, int off, int len);

/** Short for read(BUF, 0, BUF.length). */

int read(char[] buf);

/** Read and return single character, or -1 at end-of-stream. */

int read();

}

• Can’t write new Reader(); it’s abstract. So what good is it?

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 4

Generic Partial Implementation

• According to their specifications, some of Reader’s methods are re-
lated.

• Can express this with a partial implementation, which leaves key
methods unimplemented and provides default bodies for others.

• Result still abstract: can’t use new on it.

/** A partial implementation of Reader. Complete

* implementations MUST override close and read(,,).

* They MAY override the other read methods for speed. */

public abstract class AbstractReader implements Reader {

public abstract void close();

public abstract int read(char[] buf, int off, int len);

public int read(char[] buf) { return read(buf,0,buf.length); }

public int read() { return (read(buf1) == -1) ? -1 : buf1[0]; }

private char[] buf1 = new char[1];

}

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 5

Implementation of Reader: StringReader

The class StringReader reads characters from a String:

public class StringReader extends AbstractReader {

private String str;

private int k;

/** A Reader delivering the characters in STR. */

public StringReader(String str)

{ this.str = str; k = 0; }

public void close() { str = null; }

public int read(char[] buf, int off, int len) {

if (k == str.length())

return -1;

len = Math.min(len, str.length() - k);

str.getChars(k, k+len, buf, off);

k += len;

return len;

}

}

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 6

Using Reader

Consider this method, which counts words:

/** The total number of words in R, where a "word" is

* a maximal sequence of non-whitespace characters. */

int wc(Reader r) {

int c0, count;

c0 = ’ ’; cnt = 0;

while (true) {

int c = r.read();

if (c == -1) return count;

if (Character.isWhitespace((char) c0) && ! Character.isWhitespace((char) c))

count += 1;

c0 = c;

}

}

This method works for any Reader:

// Number of words in the String someText:

wc(new StringReader(someText))
// Number of words in standard input.

wc(new InputStreamReader (System.in))

// Number of words in file named fileName:

wc(new FileReader(fileName))



































other implementations of Reader

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 7

How It Fits Together

wc method

· · ·

read()

· · ·

read(b,o,l)

read(b)

read()

· · ·

Reader

read(b,o,l)

read(b)

read()

· · ·

StringReader

read(b,o,l)

read(b)

read()

· · ·

AbstractReader

extendsimplements

implements

calls
which

is really

inherited

from

calls

inherited

from

calls

overrides

Client Interface Concrete Class Abstract Template

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 8

Lessons

• The Reader interface class served as a specification for a whole set
of readers.

• Ideally, most client methods that deal with Readers, like wc, will
specify type Reader for the formal parameters, not a specific kind
of Reader, thus assuming as little as possible.

• And only when a client creates a new Reader will it get specific about
what subtype of Reader it needs.

• That way, client’s methods are as widely applicable as possible.

• Finally, AbstractReader is a tool for implementors of non-abstract
Reader classes, and not used by clients.

• Alas, Java library is not pure. E.g., AbstractReader is really just
called Reader and there is no interface. In this example, we saw
what they should have done!

• The Comparable interface allows definition of functions that de-
pend only on a limited subset of the properties (methods) of their
arguments (such as “must have a compareTo method”).

Last modified: Wed Sep 19 14:56:29 2012 CS61B: Lecture #11 9

	CS61B Lecture #11: Examples: Comparable & Reader
	Examples: Implementing Comparable
	Implementing Comparable II
	Example: Readers
	Generic Partial Implementation
	Implementation of Reader: StringReader
	Using Reader
	How It Fits Together
	Lessons

