CS61B Lecture #26

Today: Hashing (Data Structures Chapter 7).

Next topic: Sorting (Data Structures Chapter 8).

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 1

Back to Simple Search: Hashing

e Linear search is OK for small data sets, bad for large.

e So linear search would be OK if we could rapidly narrow the search
to a few items.

e Suppose that in constant time could put any item in our data set into
a numbered bucket, where # buckets stays within a constant factor
of # keys.

e Suppose also that buckets contain roughly equal numbers of keys.

e Then search would be constant time.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 2

Hash functions

e To do this, must have way to convert key to bucket number: a hash
function.
e Example:
- N =200 data items.
- keys are longs, evenly spread over the range 0..25 — 1,
- Want to keep maximum search to L = 2 items.

- Use hash function h(K) = K%M, where M = N/L =100 is the
number of buckets: 0 < h(K) < M.

- So 100232, 433, and 10002332482 go into different buckets,
but 10, 400210, and 210 all go into the same bucket.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 3

External chaining

e Array of M buckets.
e Each bucket is a list of data items.

43001 4-+{100] 4-1500"
Eﬂ 201] 4 1 [\

E

¢ Not all buckets have same length, but average is N/M = L, the load
factor.

e To work well, hash function must avoid collisions: keys that “hash”
to equal values.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 4

Open Addressing

e Idea: Put one data item in each bucket.
e When there is a collision, and bucket is full, just use another.
e Various ways to do this:

- Linear probes: If thereisa collisionat h(K), try h(K)+m, h(K)+
2m, etc. (wrap around at end).
- Quadratic probes: h(K) +m, h(K) +m?, ...
- Double hashing: h(K) + h'(K), h(K) + 20/ (K), etc.
e Example: h(K) = K%M, with M = 10, linear probes with m = 1.
-Add1, 2,11, 3,102, 9, 18, 108, 309 to empty table.

108] 1 [2 [11]3]102[309] [18] 9]

e Things can get slow, even when table is far from full.
e Lots of literature on this technique, but

e Personally, I just settle for external chaining.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 5

Filling the Table

e To get (likely to be) constant-time lookup, need to keep #buckets
within constant factor of #items.

e So resize table when load factor gets higher than some limit.
e In general, must re-hash all table items.
e Still, this operation constant time per item,

e So by doubling table size each time, get constant amortized time
for insertion and lookup

e (Assuming, that is, that our hash function is good).

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 6

Hash Functions: Strings

e For String, "sgsi---s,—1" want function that takes all characters
and their positions into account.

e What's wrong with sq + s1 + ... + $,-1?
e For strings, Java uses
h(s)=s0-31"" 45, -31" 24 ... +5,1
computed modulo 2% as in Java int arithmetic.

e To convert to a table index in 0..N — 1, compute h(s)%N (but don’t
use table size that is multiple of 31!)

e Not as hard to compute as you might think; don't even need multipli-
cationl
int r; r = 0;
for (int i = 0; i < s.length (); i += 1)
r = (r << 5) - r + s.charAt (i);

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 7

Hash Functions: Other Data Structures I

e Lists (ArrayList, LinkedList, etc.) are analagous fo strings: e.g.,
Java uses

hashCode = 1; Iterator i = list.iterator();
while (i.hasNext()) {
Object obj = i.next();
hashCode =
31xhashCode
+ (obj==null ? 0 : obj.hashCode());
}

e Can limit time spent computing hash function by not looking at entire
list. For example: look only at first few items (if dealing with aList
or SortedSet).

e Causes more collisions, but does not cause equal things to go to dif-
ferent buckets.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 8

Hash Functions: Other Data Structures II

e Recursively defined data structures = recursively defined hash
functions.

e For example, on a binary tree, one can use something like

hash(T):
if (T == null)
return O;
else return someHashFunction (T.label ())
+ 255 * hash(T.left ())
+ 255%255 * hash(T.right ());

e Can use address of object (“*hash on identity”) if distinct (!=) ob-
jects are never considered equal.

e But carefull Won't work for Strings, because .equal Strings could
be in different buckets:

String H = "Hello",
S1=H+ ", world!'",
52 = "Hello, world!";

e Here S1.equals(82), but 81 !'= 82,

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 9

What Java Provides

e In class Object, is function hashCode ().
e By default, returns address of this, or something similar.
e Can override it for your particular type.

e For reasons given on last slide, is overridden for type String, as well
as many types in the Java library, like all kinds of List.

e The types Hashtable, HashSet, and HashMap use hashCode to give
you fast look-up of objects.

HashMap<KeyType,ValueType> map =
new HashMap<KeyType,ValueType> (approximate size, load fac-

tor) ;

map.put (key, value); // Map KEY -> VALUE.
// VALUE last mapped to by SOMEKEY.
. map.get (someKey)
// VALUE last mapped to by SOMEKEY.
. map.containsKey (someKey)
// Is SOMEKEY mapped?
. map.keySet () // All keys in MAP (a Set)

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 10

Characteristics

e Assuming good hash function, add, lookup, deletion take O(1) time,
amortized.

e Good for cases where one looks up equal keys.

e Usually bad for range queries: “Give me every name between Martin
and Napoli." [Why?]

e But sometimes OK, if hash function is monotonic (i.e., when key &, >
ks, then h(ky) > h(ks). For example,

- I'tems are time-stamped records; key is the time.
- Hashing function is to have one bucket for every hour.

e Hashing is probably not a good idea for small sets that you rapidly
create and discard [why?]

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 11

Comparing Search Structures

Here, N is #items, k is #answers to query.

Bushy “Good"
Unordered Sorted Search Hash
Function List Array Tree Table Heap
find O(N) O(lg N) O(lg N) 0(1) ©O(N)
add (1) O(N) O(lgN) O(1) ©O(gN)
range query O(N) Ok+I1gN) ©(k+1gN) O(N) O(N)
find largest O(N) o(1) O(lgN) O(N) o)
remove largest| O(N) o(1) O(gN) O(N) ©(gN)

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 12

	CS61B Lecture #26
	Back to Simple Search: Hashing
	Hash functions
	External chaining
	Open Addressing
	Filling the Table
	Hash Functions: Strings
	Hash Functions: Other Data Structures I
	Hash Functions: Other Data Structures II
	What Java Provides
	Characteristics
	Comparing Search Structures

