
CS61B Lecture #26

Today: Hashing (Data Structures Chapter 7).

Next topic: Sorting (Data Structures Chapter 8).

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 1

Back to Simple Search: Hashing

• Linear search is OK for small data sets, bad for large.

• So linear search would be OK if we could rapidly narrow the search
to a few items.

• Suppose that in constant time could put any item in our data set into
a numbered bucket, where # buckets stays within a constant factor
of # keys.

• Suppose also that buckets contain roughly equal numbers of keys.

• Then search would be constant time.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 2

Hash functions

• To do this, must have way to convert key to bucket number: a hash
function.

• Example:

– N = 200 data items.

– keys are longs, evenly spread over the range 0..263 − 1.

– Want to keep maximum search to L = 2 items.

– Use hash function h(K) = K%M , where M = N/L = 100 is the
number of buckets: 0 ≤ h(K) < M .

– So 100232, 433, and 10002332482 go into different buckets,
but 10, 400210, and 210 all go into the same bucket.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 3

External chaining

• Array of M buckets.

• Each bucket is a list of data items.

...

300 100 1500

201 1

1199

• Not all buckets have same length, but average is N/M = L, the load
factor.

• To work well, hash function must avoid collisions: keys that “hash”
to equal values.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 4



Open Addressing

• Idea: Put one data item in each bucket.

• When there is a collision, and bucket is full, just use another.

• Various ways to do this:

– Linear probes: If there is a collision at h(K), try h(K)+m, h(K)+
2m, etc. (wrap around at end).

– Quadratic probes: h(K) + m, h(K) + m2, . . .

– Double hashing: h(K) + h′(K), h(K) + 2h′(K), etc.

• Example: h(K) = K%M , with M = 10, linear probes with m = 1.

– Add 1, 2, 11, 3, 102, 9, 18, 108, 309 to empty table.

108 1 2 11 3 102 309 18 9

• Things can get slow, even when table is far from full.

• Lots of literature on this technique, but

• Personally, I just settle for external chaining.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 5

Filling the Table

• To get (likely to be) constant-time lookup, need to keep #buckets
within constant factor of #items.

• So resize table when load factor gets higher than some limit.

• In general, must re-hash all table items.

• Still, this operation constant time per item,

• So by doubling table size each time, get constant amortized time
for insertion and lookup

• (Assuming, that is, that our hash function is good).

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 6

Hash Functions: Strings

• For String, "s0s1 · · · sn−1" want function that takes all characters
and their positions into account.

• What’s wrong with s0 + s1 + . . . + sn−1?

• For strings, Java uses

h(s) = s0 · 31n−1 + s1 · 31n−2 + . . . + sn−1

computed modulo 232 as in Java int arithmetic.

• To convert to a table index in 0..N − 1, compute h(s)%N (but don’t
use table size that is multiple of 31!)

• Not as hard to compute as you might think; don’t even need multipli-
cation!

int r; r = 0;

for (int i = 0; i < s.length (); i += 1)

r = (r << 5) - r + s.charAt (i);

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 7

Hash Functions: Other Data Structures I

• Lists (ArrayList, LinkedList, etc.) are analagous to strings: e.g.,
Java uses

hashCode = 1; Iterator i = list.iterator();

while (i.hasNext()) {

Object obj = i.next();

hashCode =

31*hashCode

+ (obj==null ? 0 : obj.hashCode());

}

• Can limit time spent computing hash function by not looking at entire
list. For example: look only at first few items (if dealing with a List
or SortedSet).

• Causes more collisions, but does not cause equal things to go to dif-
ferent buckets.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 8



Hash Functions: Other Data Structures II

• Recursively defined data structures ⇒ recursively defined hash
functions.

• For example, on a binary tree, one can use something like

hash(T):

if (T == null)

return 0;

else return someHashFunction (T.label ())

+ 255 * hash(T.left ())

+ 255*255 * hash(T.right ());

• Can use address of object (“hash on identity”) if distinct (!=) ob-
jects are never considered equal.

• But careful! Won’t work for Strings, because .equal Strings could
be in different buckets:

String H = "Hello",

S1 = H + ", world!",

S2 = "Hello, world!";

• Here S1.equals(S2), but S1 != S2.

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 9

What Java Provides

• In class Object, is function hashCode().

• By default, returns address of this, or something similar.

• Can override it for your particular type.

• For reasons given on last slide, is overridden for type String, as well
as many types in the Java library, like all kinds of List.

• The types Hashtable, HashSet, and HashMap use hashCode to give
you fast look-up of objects.

HashMap<KeyType,ValueType> map =

new HashMap<KeyType,ValueType> (approximate size, load fac-
tor);

map.put (key, value); // Map KEY -> VALUE.

// VALUE last mapped to by SOMEKEY.

... map.get (someKey)

// VALUE last mapped to by SOMEKEY.

... map.containsKey (someKey)

// Is SOMEKEY mapped?

... map.keySet () // All keys in MAP (a Set)
Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 10

Characteristics

• Assuming good hash function, add, lookup, deletion take Θ(1) time,
amortized.

• Good for cases where one looks up equal keys.

• Usually bad for range queries: “Give me every name between Martin
and Napoli.” [Why?]

• But sometimes OK, if hash function is monotonic (i.e., when key k1 >
k2, then h(k1) ≥ h(k2). For example,

– Items are time-stamped records; key is the time.

– Hashing function is to have one bucket for every hour.

• Hashing is probably not a good idea for small sets that you rapidly
create and discard [why?]

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 11

Comparing Search Structures

Here, N is #items, k is #answers to query.

Bushy “Good”
Unordered Sorted Search Hash

Function List Array Tree Table Heap
find Θ(N) Θ(lg N) Θ(lg N) Θ(1) Θ(N)

add Θ(1) Θ(N) Θ(lg N) Θ(1) Θ(lg N)

range query Θ(N) Θ(k + lg N) Θ(k + lg N) Θ(N) Θ(N)

find largest Θ(N) Θ(1) Θ(lg N) Θ(N) Θ(1)

remove largest Θ(N) Θ(1) Θ(lg N) Θ(N) Θ(lg N)

Last modified: Thu Oct 25 19:09:55 2007 CS61B: Lecture #26 12


	CS61B Lecture #26
	Back to Simple Search: Hashing
	Hash functions
	External chaining
	Open Addressing
	Filling the Table
	Hash Functions: Strings
	Hash Functions: Other Data Structures I
	Hash Functions: Other Data Structures II
	What Java Provides
	Characteristics
	Comparing Search Structures

