
CS61B Lecture #9

Notice: From now on, the Blue Reader will refer to the reader that
says “Assorted Materials on Java” on the first page inside the front
cover. Likewise, the Yellow Reader will refer to the reader that says
“Data Structures (Into Java)” inside its front cover. The last reader
will just be the Java Reference Manual.

Clarification: For lecture #5. In view of some confusion in the last
lecture, I have added some stuff to slide 14 (‘Instance’ and ‘Static’
Don’t Mix).

Today: Various odds and ends in support of abstraction.

Project 1 handed out today. Skeleton files will be ready Real Soon,
but there’s lots to do without them.

Last modified: Mon Sep 20 11:42:27 2004 CS61B: Lecture #9 1

Parent constructors

• In lecture notes #5, talked about how Java allows implementer of a
class to control all manipulation of objects of that class.

• In particular, this means that Java gives the constructor of a class
the first shot at each new object.

• When one class extends another, there are two constructors—one
for the parent type and one for the new (child) type.

• In this case, Java guarantees that one of the parent’s constructors
is called first. In effect, there is a call to a parent constructor at
the beginning of every one of the child’s constructors.

• You can call the parent’s constructor yourself. By default, Java calls
the “default” (parameterless) constructor.

class Figure { class Rectangle extends Figure {

public Figure (int sides) { public Rectangle () {

... super (4);

}... }...

} }

Last modified: Mon Sep 20 11:42:27 2004 CS61B: Lecture #9 2

What to do About Errors?

• Large amount of any production program devoted to detecting and
responding to errors.

• Some errors are external (bad input, network failures); others are
internal errors in programs.

• When method has stated precondition, it’s the client’s job to comply.

• Still, it’s nice to detect and report client’s errors.

• In Java, we throw exception objects, typically:

throw new SomeException (optional description);

• Exceptions are objects. By convention, they are given two construc-
tors: one with no arguments, and one with a descriptive string argu-
ment (which the exception stores).

• Java system throws some exceptions implicitly, as when you deref-
erence a null pointer, or exceed an array bound.

Last modified: Mon Sep 20 11:42:27 2004 CS61B: Lecture #9 3

Catching Exceptions

• A throw causes each active method call to terminate abruptly, until
(and unless) we come to a try block.

• Catch exceptions and do something corrective with try:

try {

Stuff that might throw exception;
} catch (SomeException e) {

Do something reasonable;
} catch (SomeOtherException e) {

Do something else reasonable;
}

Go on with life;

• When SomeException exception occurs in “Stuff. . . ,” we immedi-
ately “do something reasonable” and then “go on with life.”

• Descriptive string (if any) available as e.getMessage() for error
messages and the like.

Last modified: Mon Sep 20 11:42:27 2004 CS61B: Lecture #9 4



Exceptions: Checked vs. Unchecked

• The object thrown by throw command must be a subtype of Throwable
(in java.lang).

• Java pre-declares several such subtypes, among them

– Error, used for serious, unrecoverable errors;

– Exception, intended for all other exceptions;

– RuntimeException, a subtype of Exception intended mostly for
programming errors too common to be worth declaring.

• Pre-declared exceptions are all subtypes of one of these.

• Any subtype of Error or RuntimeException is said to be unchecked.

• All other exception types are checked.

Last modified: Mon Sep 20 11:42:27 2004 CS61B: Lecture #9 5

Unchecked Exceptions

• Intended for

– Programmer errors: many library functions throw
IllegalArgumentException when one fails to meet a precondi-
tion.

– Errors detected by the basic Java system: e.g.,

∗ Executing x.y when x is null,

∗ Executing A[i] when i is out of bounds,

∗ Executing (String) x when x turns out not to point to a String.

– Certain catastrophic failures, such as running out of memory.

• May be thrown anywhere at any time with no special preparation.

Last modified: Mon Sep 20 11:42:27 2004 CS61B: Lecture #9 6

Checked Exceptions

• Intended to indicate exceptional circumstances that are not neces-
sarily programmer errors. Examples:

– Attempting to open a file that does not exist.

– Input or output errors on a file.

– Receiving an interrupt.

• Every checked exception that can occur inside a method must ei-
ther be handled by a try statement, or reported in the method’s
declaration.

• For example,

void myRead () throws IOException, InterruptedException { ... }

means that myRead (or something it calls) might throw IOException

or InterruptedException.

• Overriding methods may not declare additional checked exceptions.
[Why not?]

Last modified: Mon Sep 20 11:42:27 2004 CS61B: Lecture #9 7


	CS61B Lecture #9
	Parent constructors
	What to do About Errors?
	Catching Exceptions
	Exceptions: Checked vs. Unchecked
	Unchecked Exceptions
	Checked Exceptions

