
CS61B Lecture #8

• Midterm tentatively scheduled for the evening of 19 October (Tues-
day). Format: 2 hour, open-book. We will accommodate students
with conflicts as needed; please arrange an alternative time with us
the week before the exam (11–15 Oct.).

• Project #1 (coming soon) will be due on 13 Oct. (Wednesday night).

• Some advice: The Blue Reader contains information on the tools you
are using (debugger, Emacs, make, javac compiler, etc.). Be curious
about the software you’re using and the software we give you. For
example, what is our test framework doing and how? (How could you
find this out?)

Last modified: Fri Sep 17 12:18:33 2004 CS61B: Lecture #8 1

Example: Comparable

• Java library provides an interface to describe Objects that have a
natural order on them, such as String Comparable, BigInteger and
BigDecimal:

public interface Comparable { // Java 1.4 version for now

/** Returns value <0, == 0, or > 0 depending on whether

* THIS is <, ==, or > OBJ. Throws ClassCastException

* if OBJ is not comparable to THIS. */

int compareTo (Object obj);

}

• Might use in a general-purpose max function:

/** The largest value in array A, or null if A empty. */

public static Object max (Comparable[] A) {

if (A.length == 0) return null;

Comparable result = A[0];

for (int i = 1; i < A.length; i += 1)

if (result.compareTo (A[i]) < 0) result = A[i];

return result;

}

• Now max(S) will return maximum value in S if S is an array of Strings,
or any other kind of Object that implements Comparable.

Last modified: Fri Sep 17 12:18:33 2004 CS61B: Lecture #8 2

Example: Readers

• Java class java.io.Reader abstracts sources of characters.

• Here, we present a revisionist version (not the real thing):

public interface Reader { // Real java.io.Reader is abstract class

/** Release this stream: further reads are illegal */

void close ();

/** Read as many characters as possible, up to LEN,

* into BUF[OFF], BUF[OFF+1],..., and return the

* number read, or -1 if at end-of-stream. */

int read (char[] buf, int off, int len);

/** Short for read (BUF, 0, BUF.length). */

int read (char[] buf);

/** Read and return single character, or -1 at end-of-stream. */

int read ();

}

• Can’t write new Reader(); it’s abstract. So what good is it?

Last modified: Fri Sep 17 12:18:33 2004 CS61B: Lecture #8 3

Generic Partial Implementation

• According to their specifications, some of Reader’s methods are re-
lated.

• Can express this with a partial implementation, which leaves key
methods unimplemented and provides default bodies for others.

• Result still abstract: can’t use new on it.

/** A partial implementation of Reader. Complete

* implementations MUST override close and read(,,).

* They MAY override the other read methods for speed. */

public abstract class AbstractReader implements Reader {

public abstract void close ();

public abstract int read (char[] buf, int off, int len);

public int read (char[] buf) { return read(buf,0,buf.length); }

public int read () { return (read (buf1) == -1) ? -1 : buf1[0]; }

private char[] buf1 = new char[1];

}

Last modified: Fri Sep 17 12:18:33 2004 CS61B: Lecture #8 4

Implementation of Reader: StringReader

The class StringReader reads characters from a String:

public class StringReader extends AbstractReader {

private String str;

private int k;

/** A Reader delivering the characters in STR. */

public StringReader (String str)

{ this.str = str; k = 0; }

public void close () { str = null; }

public int read (char[] buf, int off, int len) {

if (k == str.length ())

return -1;

len = Math.min (len, str.length () - k);

str.getChars (k, k+len, buf, off);

k += len;

return len;

}

}

Last modified: Fri Sep 17 12:18:33 2004 CS61B: Lecture #8 5

Using Reader

Consider this method, which counts words:

/** The total number of words in R, where a "word" is

* a maximal sequence of non-whitespace characters. */

int wc (Reader r) {

int c0, count;

c0 = ’ ’; cnt = 0;

while (true) {

int c = r.read ();

if (c == -1) return count;

if (Character.isWhitespace ((char) c0) && ! Character.isWhitespace ((char) c))

count += 1;

c0 = c;

}

}

This method works for any Reader:

// Number of words in the String someText:

wc (new StringReader (someText))
// Number of words in standard input.

wc (new InputStreamReader (System.in))

// Number of words in file named fileName:

wc (new FileReader (fileName))

other implementations of Reader

Last modified: Fri Sep 17 12:18:33 2004 CS61B: Lecture #8 6

How It Fits Together

wc method

· · ·

read()

· · ·

read(b,o,l)

read(b)

read()

· · ·

Reader

read(b,o,l)

read(b)

read()

· · ·

StringReader

read(b,o,l)

read(b)

read()

· · ·

AbstractReader

extendsimplements

implements

calls
which

is really

inherited

from

calls

inherited

from

calls

overrides

Client Interface Concrete Class Abstract Template

Last modified: Fri Sep 17 12:18:33 2004 CS61B: Lecture #8 7

Lessons

• The Reader interface class served as a specification for a whole set
of readers.

• Ideally, most client methods that deal with Readers, like wc, will
specify type Reader for the formal parameters, not a specific kind
of Reader, thus assuming as little as possible.

• And only when a client creates a new Reader will it get specific about
what subtype of Reader it needs.

• That way, client’s methods are as widely applicable as possible.

• Finally, AbstractReader is a tool for implementors of non-abstract
Reader classes, and not used by clients.

• Alas, Java library is not pure. E.g., AbstractReader is really just
called Reader and there is no interface. In this example, we saw
what they should have done!

• The Comparable interface allows definition of functions that de-
pend only on a limited subset of the properties (methods) of their
arguments (such as “must have a compareTo method”).

Last modified: Fri Sep 17 12:18:33 2004 CS61B: Lecture #8 8

	CS61B Lecture #8
	Example: Comparable
	Example: Readers
	Generic Partial Implementation
	Implementation of Reader: StringReader
	Using Reader
	How It Fits Together
	Lessons

