CS61B Lectures #7:

e If you feel you can do the labs at home, make arrangements with
your TA fo get them checked off.

e Programming Contest: September 25th. Links are on our web page.

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 1

Abstract Methods and Classes

e Instance method can be abstract: No body given; must be supplied
in subtypes.

e One good use is in specifying a pure interface to a family of types:

/** A drawable object. */
public abstract class Drawable { // "abstract" = "can’t say new Drawable"
/** Expand THIS by a factor of SIZE */
public abstract void scale (double size);
/*x Draw THIS on the standard output. */
public abstract void draw ();

}

Now a Drawable is something that has at least the operations scale
and draw on it. Can't create a Drawable because it's abstract—in
particular, it has two methods without any implementation.

e BUT, we can write methods that operate on Drawables:

void drawAll (Drawable[] thingsToDraw) {
for (int i = 0; i < thingsToDraw.length; i += 1)
thingsToDraw[i] .draw ();
}

e But draw has no implementation! How can this work?
Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 2

Concrete Subclasses

e Can define kinds of Drawables that are non-abstract. To do so, must
supply implementations for all methods:
public class Rectangle extends Drawable {
public Rectangle (double w, double h) { this.w = w; this.h = h; }
public void scale (double size) { w *= size; h *= size; }
public void draw () { draw aw xh rectangle }
private double w,h;

Any Circle or Rectangle is a Drawable.

public class Circle extends Drawable {
public Circle (double rad) { this.rad = rad; }
public void scale (double size) { rad *= size; }
public void draw () { draw a circle with radius rad }
double rad;

}

e So, writing

Drawable[] things = { new Rectangle (3, 4), new Circle (2) };
drawAll (things);

draws a 3 x 4 rectangle and a circle with radius 2.

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 3

Interfaces

e In generic use, an interface is a "point where interaction occurs
between two systems, processes, subjects, etc." (Concise Oxford
Dictionary).

e In programming, often use the term to mean a description of this
generic interaction, specifically, a description of the functions or
variables by which two things interact.

e Java uses the term to refer to a slight variant of an abstract class
that contains only abstract methods (and static constants).

e Idea is to freat Java interfaces as the public specifications of data
types, and classes as their implementations:

public interface Drawable {
void scale (double size); // Automatically public abstract.
void draw Q;

}

public class Rectangle implements Drawable { ... }

e Interfaces are automatically abstract: can't say new Drawable();
can say new Rectangle(...).

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 4

Multiple Inheritance

e Can extend one class, but implement any number of interfaces.
e Contrived Example:

void copy (Readable r,
Writable w)

interface Readable {
Object get O;

} {
w.put (r.get O);

}

|
|
|
|
interface Writable { |
void put (Object x); |
|
|
|
|
|

}

class Sink implements Writable {
public void put (Object x) { ...
}

class Source implements Readable {
public Object get O { ... }
}

class Variable implements Readable, Writable {
public Object get (O { ... }
public void put (Object x) { ... 2

}

e The first argument of copy can be a Source or a Variable. The
second can be a Sink or a Variable.

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 5

Review: Higher-Order Functions

e In Scheme, you had higher-order functions like this (adapted from
SICP)

(define (map proc items)
; function list
(if (null? items)
nil
(cons (proc (car items)) (map proc (cdr items)))))
and could write

(map abs (list -10 2 -11 17))
====> (10 2 11 17)

(map (lambda (x) (x x x)) (list 1 2 3 4))
====> (1 4 9 16)

e Java does not have these directly, but can use abstract classes or
interfaces and subtyping to get the same effect (with more writing)

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 6

Map in Java

/** Function with one integer argument */ | IntList map (IntUnaryFunction proc,
| IntList items) {
if (items == null)
return null;
else return new IntList (

public interface IntUnaryFunction { |
|
|
| proc.apply (items.head),
|
|
|

int apply (int x);
}

map (proc, items.tail)

);

e It's the use of this function that's clumsy. First, define class for
absolute value function; then create an instance:

class Abs implements IntUnaryFunction {
public int apply (int x) { return Math.abs (x); }

map (new Abs (), some list);
e Or, we can write a lambda expression (sort of):

map (new IntUnaryFunction () {
public int apply (int x) { return x*x; 2}

}, some list);

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 7

A Puzzle

class B extends A {
void £ () {
System.out.println ("B.f");

class A { |
void £ () { System.out.println ("A.£f"); } |
void g O { £ O; /* or this.f() */ } |
I}

I}

//static void g (A y) { y.£O; }
}
class C {
static void main (String[] args) {
B aB =new B ;
h (aB);
}

static void h (A x) { x.g(}
//static void h (A x) { A.g(x); } x.g(x) also legal here
}

1. What is printed? Choices:
2. What if we made g static? a. A.f
3. What if we made £ static? b.B.f

4. What if £ were not defined in A? c. Some kind of error

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 8

Answer to Puzzle Example: Designing a Class

1. Executing java C prints ___, because Problem: Want a class that represents histograms, like this one:

1. C.main calls h and passes it aB, whose dynamic type is B.
2.h calls x.g(). Since g is inherited by B, we execute the code for

g in class A.
3.gcalls this.f (). Now this contains the value of h's argument, ﬂ H
whose dynamic type is B. Therefore, we execute the definition of

f that is in B. 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
4. In calls to £, in other words, static type is ignored in figuring out
what method to call. Analysis: What do we need from it? At least:

2. If g were static, we see : selection of f still depends on dynamic o Specify buckets and limits.
type of this.

e Accumulate counts of values.

3. If £ were static, would print __ because then selection of £ would _
depend on static type of this, which is A. * Retrieve counts of values.

4. If £ were not defined in A, we'd get e Retfrieve numbers of buckets and other initial parameters.

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 9 Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 10

Specification Seen by Clients Histogram Specification and Use

e The clients of a module (class, program, etc.) are the programs or /+* A histogram of floating-point values */ Sample output:

methods that use that module's exported definitions. public interface Histogram {
/** The number of buckets in THIS. */ >= 0.00
int size (); >= 10.25

e Clients are intended to rely on specifications, not code. >= 20.50
. . . /** Lower bound of bucket #K. Pre: 0<=K<size(). */ _
e Syntactic specification: method and constructor headers—syntax double Tow (int K): >=30.75

needed to use.

e In Java, intention is that exported definitions are designated public.

/** # of values in bucket #K. Pre: 0<=K<size(). */

e Semantic specification: what they do. No formal notation, so use , :
int count (int k);

comments.

- Semantic specification is a contract. /** Add VAL to the histogram. */

- Conditions client must satisfy (preconditions, marked "Pre:" in void add (double val);
examples below).

- Promised results (postconditions). void fillHistogram (Histogram H, |void printHistogram (Histogram H) {

- Design these to be all the client needs! Scanner in) for (int i = 0; i < H.size ()5 1 += 1)
{ System.out.printf

- Exceptions communicate errors, specifically failure to meet pre- while (in.hasNextDouble ()) (52952 | %4da"

conditions. H.add (in.nextDouble ()); H.low (i), H.count (i));
¥

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 11 Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 12

Last modified: Fri Sep 17 15:06:35 2004

An Implementation

public class FixedHistogram implements Histogram {
private double low, high; /* From constructorx/
private int[] count; /* Value counts */

/*+ A new histogram with SIZE buckets recording values >= LOW and < HIGH. */

public FixedHistogram (int size, double low, double high)
{
if (low >= high || size <= 0) throw new IllegalArgumentException ();

this.low = low; this.high = high;

this.count = new int[size];
public double low (int k) { return low + k * (high-low)/count.length; }
public int count (int k) { return count([k]; }
public void add (double val) {

int k = (int) ((val-low)/(high-low) * count.length);
if (k >= 0 && k < count.length) count[k] += 1;

CS61B: Lectures #7 13

Let's Make a Tiny Change

Don't require a priori bounds:

class FlexHistogram implements Histogram {
/** A new histogram with SIZE buckets. */
public FlexHistogram (int size) {
?
}
// What needs to change?
}

e How would you do this? Profoundly changes implementation.

e But clients (like printHistogramand fillHistogram) still work with
no changes.

e Illustrates the power of separation of concerns.

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 14

Last modified: Fri Sep 17 15:06:35 2004

Implementing the Tiny Change

e Pointless to pre-allocate the count array.

e Don't know bounds, so must save arguments to add.

e Then recompute count array “lazily” when count (- --) called.
e Invalidate count array whenever histogram changes.

class FlexHistogram implements Histogram {
private List<Double> values = ...; // Java library type (later)
int size;
private int[] count;

public FlexHistogram (int size) { this.size = size; this.count = null;
public void add (double x) { count = null; values.add (x); }
public int count (int k) {

if (count == null) { compute count from values here. }

return count[k];

}

CS61B: Lectures #7 15

Advantages of Procedural Interface over Visible Fields

By using public method for count instead of making the array count
visible, the "tiny change"” is transparent to clients:

e If client had to write myHist . count [k], would mean

"The number of items currently in the k't bucket of histogram
myHist (and by the way, there is an array called count in
myHist that always holds the up-to-date count).”

e Parenthetical comment useless to the client.

e But if count array had been visible, after "tiny change,” every use
of count in client program would have to change.

e So using a method for the public count decreases what client has to
know, and (therefore) has to change.

Last modified: Fri Sep 17 15:06:35 2004 CS61B: Lectures #7 16

	CS61B Lectures #7:
	Abstract Methods and Classes
	Concrete Subclasses
	Interfaces
	Multiple Inheritance
	Review: Higher-Order Functions
	Map in Java
	A Puzzle
	Answer to Puzzle
	Example: Designing a Class
	Specification Seen by Clients
	Histogram Specification and Use
	An Implementation
	Let's Make a Tiny Change
	Implementing the Tiny Change
	Advantages of Procedural Interface over Visible Fields

