
CS61B Lecture #5: Arrays and Objects

• Readings for next week: Blue Reader Chapter 6.

• Readings on language details: Java Language Specification, Chapter
10 (Arrays), Chapter 8 and 9. Again, this material is dense, and I
don’t want you to try to memorize. Do try to get as much out of it
as you easily can, and save up questions to ask in lecture, discussion,
or by e-mail. Feel free to ignore particularly mystifying sections, or
things we aren’t interested in just now: notably sections on strictfp,
volatile, transient, native, synchronized, nested and inner classes,
instance and static initializers (8.6–8.7), and enums (8.9).

• For faster response, please send urgent problems (like “the lab files
don’t compile”) as mail to cs61b, rather than using class messages.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 1

Arrays

• An array is structured container whose components are

– length, a fixed integer.

– a sequence of length simple containers of the same type, num-
bered from 0.

– (.length field usually implicit in diagrams.)

• Arrays are anonymous, like other structured containers.

• Always referred to with pointers.

• For array pointed to by A,

– Length is A.length

– Numbered component i is A[i] (i is the index)

– Important feature: index can be any integer expression.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 2

A Few Samples

Java Results

int[] x, y, z;

String[] a;

x = new int[3];

y = x;

a = new String[3];

x[1] = 2;

y[1] = 3;

a[1] = "Hello";

int[] q;

q = new int[] { 1, 2, 3 };

// Short form for declarations:

int[] r = { 7, 8, 9 };

x: 0 3 0

y:

z:

a:

Hello

q: 1 2 3

r: 7 8 9

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 3

Example: Accumulate Values

Problem: Sum up the elements of array A.

static int sum (int[] A) {

int N;

N = 0; // New (1.5) syntax

for (int i = 0; i < A.length; i += 1) for (int x : A)

N += A[i]; N += x;

return N;

}

// For the hard-core: could have written

int N, i;

for (i=0, N=0; i<A.length; N += A[i], i += 1)

{ } // or just ;

// But please don’t: it’s obscure.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 4

Example: Insert into an Array

Problem: Want a call like insert (A, 2, "gnu") to convert (destruc-
tively)

A: bear
gazelle
hartebeest
skunk

A: bear
gazelle
gnu
hartebeest

to

/** Insert X at location K in ARR, moving items

* K, K+1, ... to locations K+1, K+2,

* The last item in ARR is lost. */

static void insert (String[] arr, int k, String x) {

for (int i = arr.length-1; i > k; i -= 1) // Why backwards?

arr[i] = arr[i-1];

// Alternative to this loop:

// System.arraycopy (arr, k,
︸ ︷︷ ︸

from

arr, k+1,
︸ ︷︷ ︸

to
arr.length-k-1
︸ ︷︷ ︸

to copy

);

arr[k] = x;

}

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 5

Growing an Array

Problem: Suppose that we want to change the description above, so
that A = insert2 (A, 2, "gnu") does not shove “skunk” off the end,
but instead “grows” the array.

A: bear
gazelle
hartebeest
skunk

A: bear
gazelle
gnu
hartebeest
skunk

to

/** Return array, r, where r.length = ARR.length+1; r[0..K-1]

* the same as ARR[0..K-1], r[k] = x, r[K+1..] same as ARR[K..]. */

static String[] insert2 (String[] arr, int k, String x) {

String[] result = new String[arr.length + 1];

System.arraycopy (arr, 0, result, 0, k);

System.arraycopy (arr, k, result, k+1, arr.length-k);

result[k] = x;

return result;

}

• Why do we need a different return type from insert??

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 6

Object-Based Programming

Basic Idea.

• Function-based programs are organized primarily around the func-
tions (methods, etc.) that do things. Data structures (objects) are
considered separate.

• Object-based programs are organized around the types of objects
that are used to represent data; methods are grouped by type of
object.

• Simple banking-system example:

account

deposit

account

account

withdraw

account

Function-based

Account

deposit

withdraw balance: 1420

Exported
methods

Exported
field

Object-based

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 7

Philosophy

• Idea (from 1970s and before): An abstract data type is

– a set of possible values (a domain), plus

– a set of operations on those values (or their containers).

• In IntList, for example, the domain was a set of pairs: (head,tail),
where head is an int and tail is a pointer to an IntList.

• The IntList operations consisted only of assigning to and accessing
the two fields (head and tail).

• In general, prefer a purely procedural interface, where the func-
tions (methods) do everything—no outside access to fields.

• That way, implementor of a class and its methods has complete con-
trol over behavior of instances.

• In Java, the preferred way to write the “operations of a type” is as
instance methods.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 8

You Saw It All in CS61A: The Account class

(define-class (account balance0)

(instance-vars (balance 0))

(initialize

(set! balance balance0))

(method (deposit amount)

(set! balance (+ balance amount))

balance)

(method (withdraw amount)

(if (< balance amount)

(error "Insufficient funds")

(begin

(set! balance (- balance amount))

balance))))

(define my-account

(instantiate account 1000))

(ask my-account ’balance)

(ask my-account ’deposit 100)

(ask my-account ’withdraw 500)

public class Account {

public int balance;

public Account (int balance0) {

balance = balance0;

}

public int deposit (int amount) {

balance += amount; return balance;

}

public int withdraw (int amount) {

if (balance < amount)

throw new IllegalStateException

("Insufficient funds");

else balance -= amount;

return balance;

}

}

Account myAccount = new Account (1000);

myAccount.balance

myAccount.deposit (100);

myAccount.withdraw(500);

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 9

The Pieces

• Class declaration defines a new type of object, i.e., new type of
structured container.

• Instance variables such as balance are the simple containers within
these objects (fields or components).

• Instance methods, such as deposit and withdraw are like ordinary
(static) methods that take an invisible extra parameter (called this).

• The new operator creates (instantiates) new objects, and initializes
them using constructors.

• Constructors such as the method-like declaration of Account are
special methods that are used only to initialize new instances. They
take their arguments from the new expression.

• Method selection picks methods to call. For example,

myAccount.deposit(100)

tells us to call the method named deposit that is defined for the
object pointed to by myAccount.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 10

Getter Methods

• Slight problem with Java version of Account: anyone can assign to
the balance field

• This reduces the control that the implementor of Account has over
possible values of the balance.

• Solution: allow public access only through methods:

public class Account {

private int balance;

...

public int balance () { return balance; }

...

}

• Now the balance field cannot be directly referenced outside of
Account.

• (OK to use name balance for both the field and the method. Java
can tell which is meant by syntax: A.balance vs. A.balance().)

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 11

Class Variables and Methods

• Suppose we want to keep track of the bank’s total funds.

• This number is not associated with any particular Account, but is
common to all—it is class-wide.

• In Java, “class-wide” ≡ static

public class Account {

...

private static int funds = 0;

public int deposit (int amount) {

balance += amount; funds += amount;

return balance;

}

public static int funds () {

return funds;

}

... // Also change withdraw.

}

• From outside, can refer to either Account.funds()
or myAccount.funds() (same thing).

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 12

Instance Methods

• Instance method such as

int deposit (int amount) {

balance += amount; funds += amount;

return balance;

}

behaves sort of like a static method with hidden argument:

static int deposit (final Account this, int amount) {

this.balance += amount; funds += amount;

return this.balance;

}

• NOTE: Just explanatory: Not real Java (not allowed to declare
‘this’). (final is real Java; means “can’t change once set.”)

• Likewise, the instance-method call myAccount.deposit (100) is like
a call on this fictional static method:

Account.deposit (myAccount, 100);

• Inside method, as a convenient abbreviation, can leave off leading
‘this.’ on field access or method call if not ambiguous.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 13

‘Instance’ and ‘Static’ Don’t Mix

• Since real static methods don’t have the invisible this parameter,
makes no sense to refer directly to instance variables in them:

public static int badBalance (Account A) {

int x = A.balance; // This is OK (A tells us whose balance)

return balance; // WRONG! NONSENSE!

}

• Reference to balance here equivalent to this.balance,

• But this is meaningless (whose balance?)

• However, it makes perfect sense to access a static (class-wide) field
or method in an instance method or constructor, as happened with
funds in the deposit method.

• There’s only one of each static field, so don’t need to have a ‘this’ to
get it. Can just name the class.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 14

Constructors

• To completely control objects of some class, you must be able to set
their initial contents.

• A constructor is a kind of special instance method that is called by
the new operator right after it creates a new object, as if

L = new IntList(1,null) =⇒







tmp = pointer to 0 ;
tmp.IntList(1, null);

L = tmp;

• Instance variables initializations are moved inside constructors:

class Foo {

int x = 5;

Foo () {

DoStuff ();

}

...

}

⇐⇒

class Foo {

int x;

Foo () {

x = 5;

DoStuff ();

}

...

}

• In absence of any explicit constructor, get default constructor:
public Foo() { }.

• Multiple overloaded constructors possible (different parameters).
Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 15

Summary: Java vs. CS61A OOP in Scheme

Java CS61A OOP
class Foo ... (define-class (Foo args)...
int x = ...; (instance-vars (x ...))
Foo(args) {...} (initialize ...)
int f(...) {...} (method (f ...) ...)
static int y = ...; (class-vars (y ...))
static void g(...) {...} (define (g...)...)
aFoo.f (...) (ask aFoo ’f ...)
aFoo.x (ask aFoo ’x)
new Foo (...) (instantiate Foo ...)
this self

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 16

	CS61B Lecture #5: Arrays and Objects
	Arrays
	A Few Samples
	Example: Accumulate Values
	Example: Insert into an Array
	Growing an Array
	Object-Based Programming
	Philosophy
	You Saw It All in CS61A: The Account class
	The Pieces
	Getter Methods
	Class Variables and Methods
	Instance Methods
	`Instance' and `Static' Don't Mix
	Constructors
	Summary: Java vs. CS61A OOP in Scheme

