CS61B Lecture #5: Arrays and Objects Arrays

e Readings for next week: Blue Reader Chapter 6. e Anarray is structured container whose components are

¢ Readings on language details: Java Language Specification, Chapter - length, a fixed integer.

10 (Arrays), Chapter 8 and 9. Again, this material is dense, and T - a sequence of length simple containers of the same type, num-
don't want you fo try to memorize. Do try to get as much out of it bered from O.

as you easily can, and save up questions to ask in lecture, discussion,
or by e-mail. Feel free to ignore particularly mystifying sections, or _ _
things we aren't interested in just now: notably sections on strictfp, * Arrays are anonymous, like other structured containers.
volatile, transient, native, synchronized, nested and inner classes, e Always referred to with pointers.

instance and static initializers (8.6-8.7), and enums (8.9).

- (length field usually implicit in diagrams.)

e For array pointed to by A,
e For faster response, please send urgent problems (like "the lab files

don't compile") as mail to csé1b, rather than using class messages. ~Lengthis A.length

- Numbered component i is A[i] (i is the index)
- Important feature: index can be any integer expression.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 1 Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 2

A Few Samples Example: Accumulate Values

Java Problem: Sum up the elements of array A.

static int sum (int[] A) {
int N;
N = 0; // New (1.5) syntax
for (int i = 0; i < A.length; i += 1) for (int x : A)
N += A[i]; N += x;
return N;

}

int[] %, y, z;
String[] a;
X = new int[3];

= x;
a = new String[3];
x[1] = 2;
y[1] = 3;
al1] = "Hello";
int[] q; // For the hard-core: could have written
q = new int[] { 1, 2, 3 };
// Short form for declarations:
int[] r={7, 8, 91};

int N, 1i;
for (i=0, N=0; i<A.length; N += A[i], i += 1)
{3} // or just ;

// But please don’t: it’s obscure.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 3 Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 4

Example: Insert into an Array

Problem: Want acall like insert (A, 2, "gnu") to convert (destruc-
tively)

bear : bear
gazelle to gazelle
hartebeest gnu

skunk hartebeest

/*x Insert X at location K in ARR, moving items
* K, K+1, ... to locations K+1, K+2,
* The last item in ARR is lost. */
static void insert (Stringl[] arr, int k, String x) {
for (int i = arr.length-1; i > k; i -= 1) // Why backwards?
arr[i] = arr[i-1];
// Alternative to this loop:
// System.arraycopy (arr, k, arr, k+1, arr.length-k-1);
from to # to copy

arr[k] = x;

}

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 5

Growing an Array

Problem: Suppose that we want to change the description above, so
that A = insert2 (A, 2, "gnu") does not shove "skunk" off the end,
but instead "grows"” the array.

bear : bear
gazelle to gazelle
hartebeest gnu

skunk hartebeest
skunk

/*x Return array, r, where r.length = ARR.length+1; r[0..K-1]

* the same as ARR[0..K-1], r[k] = x, r[K+1..] same as ARR[K..].
static String[] insert2 (String[]l arr, int k, String x) {

String[] result = new Stringlarr.length + 1];

System.arraycopy (arr, 0, result, 0, k);

System.arraycopy (arr, k, result, k+1, arr.length-k);

result[k] = x;

return result;

e Why do we need a different return type from insert??

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 6

Object-Based Programming

Basic Idea.

e Function-based programs are organized primarily around the func-
tions (methods, efc.) that do things. Data structures (objects) are
considered separate.

e Object-based programs are organized around the types of objects
that are used fo represent data; methods are grouped by type of
object.

e Simple banking-system example:

Function-based Object-based

account account Account

- deposit

@@ @@ - withdraw balance: 1420

Exported Exported

account account methods

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 7

Philosophy

e Idea (from 1970s and before): An abstract data type is

- a set of possible values (a domain), plus
- a set of operations on those values (or their containers).

e InIntList, for example, the domain was a set of pairs: (head,tail),
where head is an int and tail is a pointer to an IntList.

e The IntList operations consisted only of assigning to and accessing
the two fields (head and tail).

e In general, prefer a purely procedural interface, where the func-
tions (methods) do everything—no outside access to fields.

e That way, implementor of a class and its methods has complete con-
trol over behavior of instances.

e In Java, the preferred way to write the “operations of a type” is as
instance methods.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 8

You Saw It All in CS61A: The Account class

(define-class (account balance0)
(instance-vars (balance 0))
(initialize

(set! balance balance0))

(method (deposit amount)
(set! balance (+ balance amount))
balance)
(method (withdraw amount)
(if (< balance amount)
(error "Insufficient funds")
(begin
(set! balance (- balance amount))
balance))))

(define my-account
(instantiate account 1000))

(ask my-account ’balance)

(ask my-account ’deposit 100)

(ask my-account ’withdraw 500)

Last modified: Mon Sep 20 03:03:54 2004

public class Account {
public int balance;
public Account (int balance0) {
balance = balanceO;
}
public int deposit (int amount) {
balance += amount; return balance;
}
public int withdraw (int amount) {
if (balance < amount)
throw new IllegalStateException
("Insufficient funds");
else balance —-= amount;
return balance;
}
}

Account myAccount = new Account (1000);
myAccount.balance

myAccount.deposit (100);
myAccount . withdraw(500) ;

CS61B: Lecture #5 9

The Pieces

e Class declaration defines a new type of object, i.e., new type of
structured container.

¢ Instance variables such as balance are the simple containers within
these objects (fields or components).

e Instance methods, such as deposit and withdraw are like ordinary
(static) methods that take an invisible extra parameter (called this).

e The new operator creates (instantiates) new objects, and initializes
them using constructors.

e Constructors such as the method-like declaration of Account are
special methods that are used only to initialize new instances. They
take their arguments from the new expression.

e Method selection picks methods to call. For example,
myAccount.deposit (100)

tells us to call the method named deposit that is defined for the
object pointed o by myAccount.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 10

Getter Methods

e Slight problem with Java version of Account: anyone can assign to

the balance field

e This reduces the control that the implementor of Account has over

possible values of the balance.

e Solution: allow public access only through methods:

public class Account {
private int balance;

public int balance () { return balance; }

}

e Now the balance field cannot be directly referenced outside of

Account.

e (OK to use name balance for both the field and the method. Java
can tell which is meant by syntax: A.balance vs. A.balance().)

Last modified: Mon Sep 20 03:03:54 2004

CS61B: Lecture #5 11

Class Variables and Methods

e Suppose we want to keep track of the bank's total funds.

e This number is not associated with any particular Account, but is
common to all—it is class-wide.

e In Java, “class-wide" = static

public class Account {

private static int funds = O;

public int deposit (int amount) {
balance += amount; funds += amount;
return balance;

}

public static int funds O {
return funds;

}

// Also change withdraw.
}

e From outside, can refer to either Account . funds ()
or myAccount . funds () (same thing).

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5

Instance Methods

e Instance method such as

int deposit (int amount) {
balance += amount; funds += amount;
return balance;

}
behaves sort of like a static method with hidden argument:

static int deposit (final Account this, int amount) {
this.balance += amount; funds += amount;
return this.balance;

}

¢ NOTE: Just explanatory: Not real Java (not allowed to declare
'this’). (final is real Java; means "can't change once set.")

e Likewise, the instance-method call myAccount .deposit (100) is like
a call on this fictional static method:

Account.deposit (myAccount, 100);

e Inside method, as a convenient abbreviation, can leave off leading
‘this.’ on field access or method call if not ambiguous.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 13

‘Instance’ and 'Static’ Don't Mix

e Since real static methods don't have the invisible this parameter,
makes no sense to refer directly o instance variables in them:

public static int badBalance (Account A) {

int x = A.balance; // This is 0K (A tells us whose balance)

return balance; // WRONG! NONSENSE!
}

e Reference to balance here equivalent to this.balance,
e But this is meaningless (whose balance?)

e However, it makes perfect sense to access a static (class-wide) field
or method in an instance method or constructor, as happened with
funds in the deposit method.

e There's only one of each static field, so don't need to have a 'this’ to
get it. Can just name the class.

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 14

Constructors

e To completely control objects of some class, you must be able to set
their initial contents.

e A constructor is a kind of special instance method that is called by
the new operator right after it creates a new object, as if
tmp = pointer to [O]\].
L = new IntList(1,null) = {tmp.IntList (1, null);
L = tmp;

e Instance variables initializations are moved inside constructors:

class Foo
class Foo { 1

int x = 5;
Foo () {

DoStuff ();
¥

int x;
Foo () {
X = b;
DoStuff ();
}

3

}

e In absence of any explicit constructor, get default constructor:
public Foo() { }.

e Multiple overloaded constructors possible (different parameters).

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 15

Summary: Java vs. CS61A OOP in Scheme

Java CS61A OOP
class Foo ... (define-class (Foo args)...
int x = ...; (instance-vars (x ...))
Foo(args) {...} (initialize ...)
int £(...) {..} (method (f ..) ...)
staticinty=..; (class-vars (y ...))
static void g(...) {...} | (define (g...)...)
aFoo.f (...) (ask aFoo 'f ...)
aFoo.x (ask aFoo 'x)
new Foo (...) (instantiate Foo ...)
this self

Last modified: Mon Sep 20 03:03:54 2004 CS61B: Lecture #5 16

	CS61B Lecture #5: Arrays and Objects
	Arrays
	A Few Samples
	Example: Accumulate Values
	Example: Insert into an Array
	Growing an Array
	Object-Based Programming
	Philosophy
	You Saw It All in CS61A: The Account class
	The Pieces
	Getter Methods
	Class Variables and Methods
	Instance Methods
	`Instance' and `Static' Don't Mix
	Constructors
	Summary: Java vs. CS61A OOP in Scheme

