
CS61B Lecture #4: Simple Pointer Manipulation

• Always turn homework in and do labs, even if you don’t completely
get it!

• Today: Still working on Chapters 1–3 of the Blue Reader.

• Details on Java-language material to date may be found in the Java
Language Specification reader, Chapter 2 (notation), Chapter 3 (just
read lightly), and sections 14.2, 14.4–14.9, 14-12–14.18, 15.1–15.3,
15.7, 15.11.1, 15.13–15.15, 15.17, 15.18, 15.20, 15.21, 15.23–15.27

• OASES is a non-profit organization that tutors underprivileged chil-
dren grades 1–12. It offers up to 2 units for tutors. The OASES
Infosession is Thursday, Sept. 9th at 7:30pm in 2040 VLSB.

Last modified: Wed Sep 8 14:18:59 2004 CS61B: Lecture #4 1

Destructive Incrementing

Destructive solutions may modify the original list to save time or space:

/** List of all items in P incremented by n. May destroy original. */

static IntList dincrList (IntList P, int n) {

if (P == null)

return null;

else {

P.head += n;

P.tail = dincrList (P.tail, n);

return P;

}

}

/** List L destructively incremented

* by n. */

static IntList dincrList (IntList L, int n) {

// ’for’ can do more than count!

for (IntList p = L; p != null; p = p.tail)

p.head += n;

return L;

}

X = IntList.list (3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList (X, 2);

X:

Q:

L:

P:

5 45 58

Last modified: Wed Sep 8 14:18:59 2004 CS61B: Lecture #4 2

Another Way to View Pointers

• Some folks find the idea of “copying an arrow” somewhat odd.

• Alternative view: think of a pointer as a label , like a street address.

• Each object has a permanent label on it, like the address plaque on
a house.

• Then a variable containing a pointer is like a scrap of paper with a
street address written on it.

• One view:

last:

result: 5 45

• Alternative view:

#3last:

#7result: 5 #3
7

45
3

Last modified: Wed Sep 8 14:18:59 2004 CS61B: Lecture #4 3

Another Example: Non-destructive List Deletion

If L is the list [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new
list [1, 9].

/** The list resulting from removing all instances of X from L

* non-destructively. */

static IntList removeAll (IntList L, int x) {

if (L == null)

return null;

else if (L.head == x)

return removeAll (L.tail, x);

else

return new IntList (L.head, removeAll (L.tail, x));

}

Last modified: Wed Sep 8 14:18:59 2004 CS61B: Lecture #4 4

Iterative Non-destructive List Deletion

Same as before, but use front-to-back iteration rather than recursion.
/** The list resulting from removing all instances of X from L

* non-destructively. */

static IntList removeAll (IntList L, int x) {

IntList result, last;

result = last = null;

for (; L != null; L = L.tail) {

/* L != null and I is true. */

if (x == L.head)

continue;

else if (last == null)

result = last = new IntList (L.head, null);

else

last = last.tail = new IntList (L.head, null);

}

return result;

}

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)
P does not change!

1 9

Here, I is the loop invariant:
Result is all elements of L0 not equal to x up to and not
including L, and last points to the last element of result,
if any. We use L0 here to mean “the original value of L.”

Last modified: Wed Sep 8 14:18:59 2004 CS61B: Lecture #4 5

Aside: How to Write a Loop (in Theory)

• Try to give a description of how things look on any arbitrary itera-
tion of the loop.

• This description is known as a loop invariant, because it is true from
one iteration to the next.

• The loop body then must

– Start from any situation consistent with the invariant;

– Make progress in such a way as to make the invariant true again.

while (condition) {

// Invariant true here

loop body
// Invariant again true here

}

// Invariant true and condition false.

• So if (invariant and not condition) is enough to insure we’ve got the
answer, we’re done!

Last modified: Wed Sep 8 14:18:59 2004 CS61B: Lecture #4 6

Destructive Deletion

: Original : after Q = dremoveAll (Q,1)

Q: 1 2 3 1 1 0 1

/** The list resulting from removing all instances of X from L.

* The original list may be destroyed. */

static IntList dremoveAll (IntList L, int x) {

if (L == null)

return null;

else if (L.head == x)

return dremoveAll (L.tail, x);

else {

L.tail = dremoveAll (L.tail, x);

return L;

}

}

Last modified: Wed Sep 8 14:18:59 2004 CS61B: Lecture #4 7

Iterative Destructive Deletion

/** The list resulting from removing all instances of X from L.

* Original contents of L may be destroyed. */

static IntList dremoveAll (IntList L, int x) {

IntList result, last;

result = last = null;

while (L != null) {

IntList next = L.tail;

if (x != L.head) {

if (last == null)

result = last = L;

else

last = last.tail = L;

L.tail = null;

}

L = next;

}

return result;

}

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

Last modified: Wed Sep 8 14:18:59 2004 CS61B: Lecture #4 8

	CS61B Lecture #4: Simple Pointer Manipulation
	Destructive Incrementing
	Another Way to View Pointers
	Another Example: Non-destructive List Deletion
	Iterative Non-destructive List Deletion
	Aside: How to Write a Loop (in Theory)
	Destructive Deletion
	Iterative Destructive Deletion

