CS61B Lecture #36 Why Graphs?

Today's Readings: Graph Structures: DSIJ, Chapter 12 e For expressing non-hierarchically related items

e Examples:

No labs this week: Happy Thanksgiving! - Networks: pipelines, roads, assignment problems

- Representing processes: flow charts, Markov models
- Representing partial orderings: PERT charts, makefiles
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Some Terminology Some Pictures

e A graph consists of Directed Undirected

- A set of nodes (aka vertices)

- A set of edges: pairs of nodes.

- Nodes with an edge between are adjacent.

- Depending on problem, nodes or edges may have labels (or weights)

e Typically call node set V' = {uy, ...}, and edge set E.

e If the edges have an order (first, second), they are directed edges,
and we have a directed graph (digraph), otherwise an undirected
graph.

e Edges are incident to their nodes.
¢ Directed edges exit one node and enter the next.

e A cycle is a path without repeated edges leading from a node back
to itself (following arrows if directed).

e A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Di-
rected Acyclic Graph—DAG.
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Trees are Graphs

e A graph is connected if there is a (possibly directed) path between
every pair of nodes.

e That is, if one node of the pair is reachable from the other.

e ADAG is a (rooted) tree iff connected, and every node but the root
has exactly one parent.

e A connected, acyclic, undirected graph is also called a free tree.
Free: we're free to pick the root; e.g.,
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Examples of Use
e Edge = Connecting road, with length.

200

e Edge = Must be completed before; Node label = time to complete.

Sleep
8 hrs

e Edge = Begat
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More Examples

e Edge = some relationship

@ B @ N @
‘ S ‘ ,‘

e Edge = next state might be (with probability)

0.9

e Edge = next state in state machine, label is triggering input. (Start
at s. Being in state 4 means "there is a substring '001' somewhere in

the input”.)
! 0
e
1
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Representation

e Often useful to number the nodes, and use the numbers in edges.

e Edge list representation: each node contains some kind of list (e.g.,
linked list or array) of its successors (and possibly predecessors).

R N LN N

° (2.3) 0 B M 0 (1.2)
e Edge sets: Collection of all edges. For graph above:

{(1,2),(1,3),(2,3)}

e Adjacency matrix: Represent connection with matrix entry:

3
1
1
0
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Traversing a 6raph General 6raph Traversal Algorithm

e Many algorithms on graphs depend on traversing all or some nodes. COLLECTION.OF_VERTICES fringe;

e Can't quite use recursion because of cycles. fringe = INITIAL COLLECTION;

e Even in acyclic graphs, can get combinatorial explosions: while (! fringe.isEmpty()) {
Vertex v = fringe.REMOVE HIGHEST PRIORITY.ITEMQ);

0 ° a if (! MARKED (v)) {
Q.e.e o MARK (v) ;
VISIT (v);
e e e For each edge (v,w) {

Treat O as the root and do recursive traversal down the two edges ifA;Q'EEDSf RQCE‘?SING(W))
out of each node: ©(2") operations! ¥ ko fringe;

e So typically try to visit each node constant # of times (e.g., once).
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Example: Depth-First Traversal Depth-First Traversal Illustrated

Problem: Visit every node reachable from v once, visiting nodes fur-
ther from start first.

Stack<Vertex> fringe;

fringe = stack containing {v}; Marked: @) © (o
while (! fringe.isEmpty()) {
Vertex v = fringe.pop Q);

ONG NG
if (1 marked(v)) { Fringe: 2] £l
mark (v) ;
VISIT (v);
For each edge (v,w) {
if (! marked (w))
fringe.push (w);

d 6
0
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Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with
the edges.

e That is, order the nodes vy, vy, ... such that v is never reachable
from vy if k' > k.

e Gmake does this. Also PERT charts.

Set<Vertex> fringe;
fringe = set of all nodes with no predecessors;
while (! fringe.isEmpty()) {
Vertex v = fringe.removeOne ();
add v to end of result list;
For each edge (v,w) {
decrease predecessor count of w;
[A,B,C,F,D,G,E,H], or if (predecessor count of w == 0)

[A,C,B,D,F,E,G,H], or fringe.add (w);
[A,B,C,F,D,E,H,G], or
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Topological Sort in Action

[A,C,B,F] [A,C,B,F,D]
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[A,C,B,F,D,E,G,H]
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Shortest Paths: Dijkstra’'s Algorithm

Problem: Given a graph (directed or undirected) with non-negative
edge weights, compute shortest paths from given source node, s, to
all nodes.

e "Shortest” = sum of weights along path is smallest.
e For each node, keep estimated distance from s, ...
e ...and of preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;
For each node v { v.dist() = oo; v.back() = null; }
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
Vertex v = fringe.removeFirst ();

For each edge (v,w) {
if (v.dist() + weight(v,w) < w.dist())
{ w.dist() = v.dist() + weight(v,w); w.back() = v; }
}
}
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Final result:
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Example

----+» Shortest-path tree
@ processed node at distance d

@ node in fringe at distance d
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