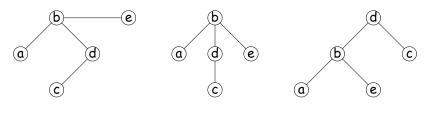
CS61B Lecture #36	Why Graphs?		
Today's Readings: Graph Structures: DSIJ, Chapter 12	 For expressing non-hierarchically related items 		
No labs this week: Happy Thanksgiving!	 Examples: Networks: pipelines, roads, assignment problems Representing processes: flow charts, Markov models Representing partial orderings: PERT charts, makefiles 		
Last modified: Tue Nov 30 19:55:36 2004 C561B: Lecture #36 1	Last modified: Tue Nov 30 19:55:36 2004 C561B: Lecture #36 2		
Some Terminology	Some Pictures		
 A graph consists of A set of nodes (aka vertices) A set of edges: pairs of nodes. Nodes with an edge between are adjacent. Depending on problem, nodes or edges may have labels (or weights) Typically call node set V = {v₀,}, and edge set E. If the edges have an order (first, second), they are directed edges, and we have a directed graph (digraph), otherwise an undirected graph. Edges are incident to their nodes. Directed edges exit one node and enter the next. A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed). A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Directed Acyclic Graph—DAG. 	Directed Undirected Acyclic: a d a c d a d		

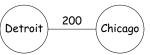
Trees are Graphs

- A graph is *connected* if there is a (possibly directed) path between every pair of nodes.
- That is, if one node of the pair is reachable from the other.
- A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.
- A connected, acyclic, undirected graph is also called a *free tree*. Free: we're free to pick the root; e.g.,

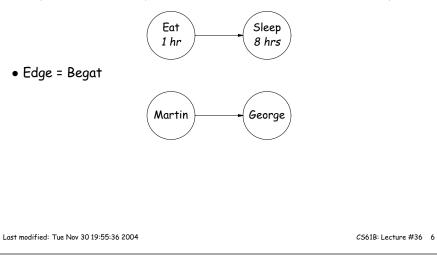


Examples of Use

• Edge = Connecting road, with length.

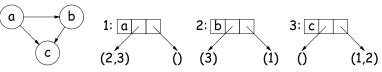


• Edge = Must be completed before; Node label = time to complete.



Representation

- Often useful to number the nodes, and use the numbers in edges.
- Edge list representation: each node contains some kind of list (e.g., linked list or array) of its successors (and possibly predecessors).



• Edge sets: Collection of all edges. For graph above:

$\{(1,2),(1,3),(2,3)\}$

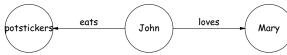
• Adjacency matrix: Represent connection with matrix entry:

			3
1	0	1	1
2	0	0	1
3	$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$	0	0

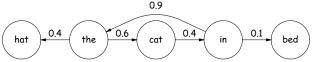
More Examples

• Edge = some relationship

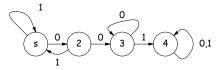
Last modified: Tue Nov 30 19:55:36 2004



• Edge = next state might be (with probability)



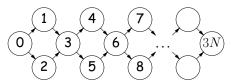
• Edge = next state in state machine, label is triggering input. (Start at s. Being in state 4 means "there is a substring '001' somewhere in the input".)



CS61B: Lecture #36 5

Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes.
- Can't quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:



Treat 0 as the root and do recursive traversal down the two edges out of each node: $\Theta(2^N)$ operations!

• So typically try to visit each node constant # of times (e.g., once).

General Graph Traversal Algorithm

COLLECTION_OF_VERTICES fringe;

```
fringe = INITIAL_COLLECTION;
while (! fringe.isEmpty()) {
    Vertex v = fringe.REMOVE_HIGHEST_PRIORITY_ITEM();
```

if (! MARKED(v)) {
 MARK(v);
 VISIT(v);
 For each edge (v,w) {
 if (NEEDS_PROCESSING(w))
 Add w to fringe;
 }
}

}

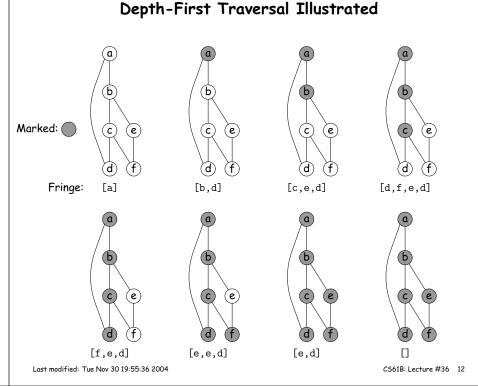
Last modified: Tue Nov 30 19:55:36 2004 C561B: Lecture #36 9 Last modified: Tue Nov 30 19:55:36 2004

Example: Depth-First Traversal

Problem: Visit every node reachable from v once, visiting nodes further from start first.

```
Stack<Vertex> fringe;
```

```
fringe = stack containing {v};
while (! fringe.isEmpty()) {
    Vertex v = fringe.pop ();
    if (! marked(v)) {
        mark(v);
        VISIT(v);
        For each edge (v,w) {
            if (! marked (w))
                fringe.push (w);
            }
        }
}
```

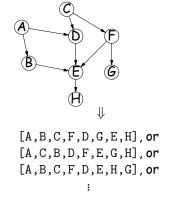


CS61B: Lecture #36 10

Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with the edges.

- That is, order the nodes v_0, v_1, \ldots such that v_k is never reachable from $v_{k'}$ if k' > k.
- Gmake does this. Also PERT charts.



Set<Vertex> fringe; fringe = set of all nodes with no predecessors; while (! fringe.isEmpty()) { Vertex v = fringe.removeOne (); add v to end of result list; For each edge (v,w) { decrease predecessor count of w; if (predecessor count of w == 0) fringe.add (w); } }

Last modified: Tue Nov 30 19:55:36 2004

CS61B: Lecture #36 13

Shortest Paths: Dijkstra's Algorithm

Problem: Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, *s*, to all nodes.

- "Shortest" = sum of weights along path is smallest.
- For each node, keep estimated distance from s, \ldots
- $\bullet \dots$ and of preceding node in shortest path from s.

```
PriorityQueue<Vertex> fringe;
For each node v { v.dist() = ∞; v.back() = null; }
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeFirst ();
    For each edge (v,w) {
        if (v.dist() + weight(v,w) < w.dist())
            { w.dist() = v.dist() + weight(v,w); w.back() = v; }
    }
}
```



Topological Sort in Action

frinae