CS61B Lecture #35

[The Lecture #32 notes covered lectures #33 and #34.]
Today: Enumerated types, backtracking searches, game trees.

Coming Up: Graph Structures: DSIJ, Chapter 12

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 1

Enumeration Types

e Problem: Need a type to represent something that has a few, named,
discrete values.

e In the purest form, the only necessary operations are == and !=;
the only property of a value of the type is that it differs from all
others.

e In older versions of Java, used named integer constants:

interface Pieces {
int BLACK_PIECE = 0, // Fields in interfaces are static final.
BLACK_KING = 1,
WHITE_PIECE = 2,
WHITE_KING = 3,
EMPTY = 4;
}

e C and C++ provide enumeration types as a shorthand, with syntax like
this:

enum Piece { BLACK_PIECE, BLACK_KING, WHITE_PIECE, WHITE_KING, EMPTY };

e But since all these values are basically ints, accidents can happen.

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 2

Enum Types in Java

e New version of Java allows syntax like that of C or C++, but with
more guarantees:

public enum Piece {

BLACK_PIECE, BLACK_KING, WHITE_PIECE, WHITE_KING, EMPTY
3

e Defines Piece as a hew reference type, a special kind of class type.

e The names BLACK_PIECE, etc., are static, final enumeration constants
(or enumerals) of type PIECE.

e They are automatically initialized, and are the only values of the
enumeration type that exist (illegal to use new to create an enum
value.)

e Can safely use ==, and also switch statements:

boolean isKing (Piece p) {
switch (p) {
case BLACK_KING: case WHITE_KING: return true;
default: return false;
}
}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 3

Operations on Enum Types

e Order of declaration of enumeration constants significant: .ordinal ()
gives the position (numbering from 0) of an enumeration value. Thus,
Piece.BLACK KING.ordinal () is 1.

e The array Piece.values() gives all the possible values of the type.
Thus, you can write:

for (Piece p : Piece.values ())
System.out.printf ("Piece value #%d is %s/n", p.ordinal (), p);

e The static function Piece.valueOf converts a String into a value of
type Piece. So Piece.valueOf ("EMPTY") == EMPTY.

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 4




Fancy Enum Types

e Enums are classes. You can define all the extra fields, methods, and
constructors you want.

e Constructors are used only in creating enumeration constants. The
constructor arguments follow the constant name:

enum Piece {
BLACK_PIECE (BLACK, false, "b"), BLACK_KING (BLACK, true, "B"),
WHITE_PIECE (WHITE, false, "w"), WHITE_KING (WHITE, true, "W"),
EMPTY (null, false, " ");

private final Side color;
private final boolean isKing;

private final String textName;

Piece (Side color, boolean isKing, String textName) {

this.color = color; this.isKing = isKing; this.textName = textName;

}

Side color () { return color; }
boolean isKing () { return isKing; }
String textName () { return textName; }

3

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 5

New Topic: Searching by “"Generate and Test”

e We've been considering the problem of searching a set of data stored
in some kind of data structure: "Is z € S?"

e But suppose we don't have a set S, but know how to recognize what
we're after if we find it: “Is there an = such that P(x)?"

e If we know how to enumerate all possible candidates, can use ap-
proach of Generate and Test: test all possibilities in turn.

e Can sometimes be more clever: avoid trying things that won't work,
for example.

e What happens if the set of possible candidates is infinite?

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 6

Backtracking Search

e Backtracking search is one way to enumerate all possibilities.

e Example: Knight's Tour. Find all paths a knight can travel on a chess-
board such that it touches every square exactly once and ends up
one knight move from where it started.

e Inthe example below, the numbers indicate position numbers (knight
starts at 0).

e Here, knight (N) is stuck; how to handle this?

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 7

General Recursive Algorithm

/*x Append to PATH a sequence of knight moves starting at ROW, COL
* that avoids all squares that have been hit already and
that ends up one square away from ENDROW, ENDCOL. B[i] [j] is
true iff row i and column j have been hit on PATH so far.
Returns true if it succeeds, else false (with no change to L).
Call initially with PATH containing the starting square, and
the starting square (only) marked in B. */

boolean findPath (boolean[][] b, int row, int col,
int endRow, int endCol, List path) {
if (L.size () == 64) return isKnightMove (row, col, endRow, endCol);
for (r, c = all possible moves from (row, col)) {
if (! blrllc]) {
blr] [c] = true; // Mark the square
path.add (new Move (r, c));
if (findPath (b, r, c, endRow, endCol, path)) return true;
blr][c] = false; // Backtrack out of the move.
path.remove (path.size ()-1);
}
}
return false;

}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35




Another Kind of Search: Best Move

e Consider the problem of finding the best move in a fwo-person game.
e One way: assign a value to each possible move and pick highest.
- Example: number of our pieces - number of opponent's pieces.

e But this is misleading. A move might give us more pieces, but set up
a devastating response from the opponent.

e So, for each move, look at opponent’s possible moves, assume he
picks the best one for him, and use that as the value.

e But what if you have a great response to his response?

e How do we organize this sensibly?

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 9

Game Trees, Minimax

e Think of the space of possible continuations of the game as a tree.

e Each node is a position, each edge a move.

-~— My move

%X ~— Opponent’s move

-~— My move

e

e Numbers are the values we guess for the positions (larger means
better for me). Starred nodes would be chosen.

o T always choose child (next position) with maximum value; opponent
chooses minimum value (*Minimax algorithm")

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 10

Alpha-Beta Pruning

e We can prune this tree as we search it.

-5 -— My move

~— Opponent’s move

-— My move

@ e g ~— Opponent’s move
i

e At the "> 5 position, T know that the opponent will not choose to
move here (since he already has a —5 move).

e At the '< —20' position, my opponent knows that I will never choose
to move here (since I already have a —5 move).

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 11

Cutting off the Search

e If you could traverse game free to the bottom, you'd be able to
force a win (if it's possible).

e Sometimes possible near the end of a game.

e Unfortunately, game trees tend to be either infinite or impossibly
large.

e S0, we choose a maximum depth, and use a heuristic value computed
on the position alone (called a static valuation) as the value at that
depth.

e Or we might use iterative deepening (kind of breadth-first search),
and repeat the search at increasing depths until time is up.

e Much more sophisticated searches are possible, however (take C5188).

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 12




Some Pseudocode for Searching

/*x A legal move for WHO that either has an estimated value >= CUTOFF
* or that has the best estimated value for player WHO, starting from
* position START, and looking up to DEPTH moves ahead. */
Move findBestMove (Player who, Position start, int depth, double cutoff)
{
if (start is a won position for who) return CANT_MOVE;
else if (start is a lost position for who) return CANT_MOVE;
else if (depth == 0) return guessBestMove (who, start, cutoff);

Move bestSoFar = REALLY_BAD_MOVE;
for (each legal move, M, for who from position start) {
Position next = start.makeMove (M);
Move response = findBestMove (who.opponent (), next,
depth-1, -bestSoFar.value ());
if (-response.value () > bestSoFar.value ()) {
SetM's value to -response.value (); // Value for who = - Value for opponent
bestSoFar = M;
if (M.value () >= cutoff) break;
}
}
return bestSoFar;

}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 13

Static Evaluation

e This leaves static evaluation, which looks just at the next possible move:

Move guessBestMove (Player who, Position start, double cutoff)
{
Move bestSoFar;
bestSoFar = Move.REALLY_BAD_MOVE;
for (each legal move, M, for who from position start) {
Position next = start.makeMove (M);
Set M's value to heuristic guess of value to who of next;
if (M.value () > bestSoFar.value ()) {
bestSoFar = M;
if (M.value () >= cutoff)
break;

}

return bestSoFar;

}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35




	CS61B Lecture #35
	Enumeration Types
	Enum Types in Java
	Operations on Enum Types
	Fancy Enum Types
	New Topic: Searching by ``Generate and Test''
	Backtracking Search
	General Recursive Algorithm
	Another Kind of Search: Best Move
	Game Trees, Minimax
	Alpha-Beta Pruning
	Cutting off the Search
	Some Pseudocode for Searching
	Static Evaluation

