
CS61B Lecture #35

[The Lecture #32 notes covered lectures #33 and #34.]

Today: Enumerated types, backtracking searches, game trees.

Coming Up: Graph Structures: DSIJ, Chapter 12

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 1

Enumeration Types

• Problem: Need a type to represent something that has a few, named,
discrete values.

• In the purest form, the only necessary operations are == and !=;
the only property of a value of the type is that it differs from all
others.

• In older versions of Java, used named integer constants:

interface Pieces {

int BLACK_PIECE = 0, // Fields in interfaces are static final.

BLACK_KING = 1,

WHITE_PIECE = 2,

WHITE_KING = 3,

EMPTY = 4;

}

• C and C++ provide enumeration types as a shorthand, with syntax like
this:

enum Piece { BLACK_PIECE, BLACK_KING, WHITE_PIECE, WHITE_KING, EMPTY };

• But since all these values are basically ints, accidents can happen.

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 2

Enum Types in Java

• New version of Java allows syntax like that of C or C++, but with
more guarantees:

public enum Piece {

BLACK_PIECE, BLACK_KING, WHITE_PIECE, WHITE_KING, EMPTY

}

• Defines Piece as a new reference type, a special kind of class type.

• The names BLACK PIECE, etc., are static, final enumeration constants
(or enumerals) of type PIECE.

• They are automatically initialized, and are the only values of the
enumeration type that exist (illegal to use new to create an enum
value.)

• Can safely use ==, and also switch statements:

boolean isKing (Piece p) {

switch (p) {

case BLACK_KING: case WHITE_KING: return true;

default: return false;

}

}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 3

Operations on Enum Types

• Order of declaration of enumeration constants significant: .ordinal()
gives the position (numbering from 0) of an enumeration value. Thus,
Piece.BLACK KING.ordinal () is 1.

• The array Piece.values() gives all the possible values of the type.
Thus, you can write:

for (Piece p : Piece.values ())

System.out.printf ("Piece value #%d is %s%n", p.ordinal (), p);

• The static function Piece.valueOf converts a String into a value of
type Piece. So Piece.valueOf ("EMPTY") == EMPTY.

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 4

Fancy Enum Types

• Enums are classes. You can define all the extra fields, methods, and
constructors you want.

• Constructors are used only in creating enumeration constants. The
constructor arguments follow the constant name:

enum Piece {

BLACK_PIECE (BLACK, false, "b"), BLACK_KING (BLACK, true, "B"),

WHITE_PIECE (WHITE, false, "w"), WHITE_KING (WHITE, true, "W"),

EMPTY (null, false, " ");

private final Side color;

private final boolean isKing;

private final String textName;

Piece (Side color, boolean isKing, String textName) {

this.color = color; this.isKing = isKing; this.textName = textName;

}

Side color () { return color; }

boolean isKing () { return isKing; }

String textName () { return textName; }

}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 5

New Topic: Searching by “Generate and Test”

• We’ve been considering the problem of searching a set of data stored
in some kind of data structure: “Is x ∈ S?”

• But suppose we don’t have a set S, but know how to recognize what
we’re after if we find it: “Is there an x such that P (x)?”

• If we know how to enumerate all possible candidates, can use ap-
proach of Generate and Test: test all possibilities in turn.

• Can sometimes be more clever: avoid trying things that won’t work,
for example.

• What happens if the set of possible candidates is infinite?

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 6

Backtracking Search

• Backtracking search is one way to enumerate all possibilities.

• Example: Knight’s Tour. Find all paths a knight can travel on a chess-
board such that it touches every square exactly once and ends up
one knight move from where it started.

• In the example below, the numbers indicate position numbers (knight
starts at 0).

• Here, knight (N) is stuck; how to handle this?

6

5

4 7

10 2

8 3 0

N 9 1

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 7

General Recursive Algorithm

/** Append to PATH a sequence of knight moves starting at ROW, COL

* that avoids all squares that have been hit already and

* that ends up one square away from ENDROW, ENDCOL. B[i][j] is

* true iff row i and column j have been hit on PATH so far.

* Returns true if it succeeds, else false (with no change to L).

* Call initially with PATH containing the starting square, and

* the starting square (only) marked in B. */

boolean findPath (boolean[][] b, int row, int col,

int endRow, int endCol, List path) {

if (L.size () == 64) return isKnightMove (row, col, endRow, endCol);

for (r, c = all possible moves from (row, col)) {

if (! b[r][c]) {

b[r][c] = true; // Mark the square

path.add (new Move (r, c));

if (findPath (b, r, c, endRow, endCol, path)) return true;

b[r][c] = false; // Backtrack out of the move.

path.remove (path.size ()-1);

}

}

return false;

}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 8

Another Kind of Search: Best Move

• Consider the problem of finding the best move in a two-person game.

• One way: assign a value to each possible move and pick highest.

– Example: number of our pieces - number of opponent’s pieces.

• But this is misleading. A move might give us more pieces, but set up
a devastating response from the opponent.

• So, for each move, look at opponent’s possible moves, assume he
picks the best one for him, and use that as the value.

• But what if you have a great response to his response?

• How do we organize this sensibly?

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 9

Game Trees, Minimax

• Think of the space of possible continuations of the game as a tree.

• Each node is a position, each edge a move.

-5

-5 -20

-5 15 -20 10

-30 -5 5 15 -20 -30 9 10

*

*

* * * *

*

My move

Opponent’s move

My move

Opponent’s move

• Numbers are the values we guess for the positions (larger means
better for me). Starred nodes would be chosen.

• I always choose child (next position) with maximum value; opponent
chooses minimum value (“Minimax algorithm”)

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 10

Alpha-Beta Pruning

• We can prune this tree as we search it.

-5

-5 ≤-20

-5 ≥5
-20

-30 -5 5
-20 -30

*

*

*
*

*

My move

Opponent’s move

My move

Opponent’s move

• At the ‘≥ 5’ position, I know that the opponent will not choose to
move here (since he already has a −5 move).

• At the ‘≤ −20’ position, my opponent knows that I will never choose
to move here (since I already have a −5 move).

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 11

Cutting off the Search

• If you could traverse game tree to the bottom, you’d be able to
force a win (if it’s possible).

• Sometimes possible near the end of a game.

• Unfortunately, game trees tend to be either infinite or impossibly
large.

• So, we choose a maximum depth, and use a heuristic value computed
on the position alone (called a static valuation) as the value at that
depth.

• Or we might use iterative deepening (kind of breadth-first search),
and repeat the search at increasing depths until time is up.

• Much more sophisticated searches are possible, however (take CS188).

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 12

Some Pseudocode for Searching

/** A legal move for WHO that either has an estimated value >= CUTOFF

* or that has the best estimated value for player WHO, starting from

* position START, and looking up to DEPTH moves ahead. */

Move findBestMove (Player who, Position start, int depth, double cutoff)

{

if (start is a won position for who) return CANT_MOVE;

else if (start is a lost position for who) return CANT_MOVE;

else if (depth == 0) return guessBestMove (who, start, cutoff);

Move bestSoFar = REALLY_BAD_MOVE;

for (each legal move, M, for who from position start) {

Position next = start.makeMove (M);

Move response = findBestMove (who.opponent (), next,

depth-1, -bestSoFar.value ());

if (-response.value () > bestSoFar.value ()) {

Set M’s value to -response.value (); // Value for who = - Value for opponent
bestSoFar = M;

if (M.value () >= cutoff) break;

}

}

return bestSoFar;

}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 13

Static Evaluation

• This leaves static evaluation, which looks just at the next possible move:

Move guessBestMove (Player who, Position start, double cutoff)

{

Move bestSoFar;

bestSoFar = Move.REALLY_BAD_MOVE;

for (each legal move, M, for who from position start) {

Position next = start.makeMove (M);

Set M’s value to heuristic guess of value to who of next;

if (M.value () > bestSoFar.value ()) {

bestSoFar = M;

if (M.value () >= cutoff)

break;

}

}

return bestSoFar;

}

Last modified: Mon Nov 22 11:47:25 2004 CS61B: Lecture #35 14

	CS61B Lecture #35
	Enumeration Types
	Enum Types in Java
	Operations on Enum Types
	Fancy Enum Types
	New Topic: Searching by ``Generate and Test''
	Backtracking Search
	General Recursive Algorithm
	Another Kind of Search: Best Move
	Game Trees, Minimax
	Alpha-Beta Pruning
	Cutting off the Search
	Some Pseudocode for Searching
	Static Evaluation

