CS61B Lecture #25

Today: Sorting, cont.
e Standard methods
e Properties of standard methods

e Selection
Readings for Today: DS(IJ), Chapter 8;

Readings for Next Topic: Balanced searches, DS(IJ), Chapter 9;

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 1

Shell’'s sort

Idea: TImprove insertion sort by first sorting distant elements:
e First sort subsequences of elements 2" — 1 apart:

- sort items #0, 28 — 1, 2(2F — 1), 3(2" —1), ..., then
-sortitems #1, 1 +2 -1, 1 +2(2" - 1), 1 +3(2" —1), ..., then
- sort items #2, 2+2" — 1, 2+2(2" - 1), 2+3(2" - 1), ..., then
- etc.

- sort items #2¢ —2, 2(2F - 1) -1, 32" -1) -1, ...,
- Each time an item moves, can reduce #inversions by as much as

2 +1.
e Now sort subsequences of elements 2°~! — 1 apart:
- sort items #0, 2871 — 1, 2(2F1 — 1), 3(2F1 —1), ..., then

-sortitems #1, 1 +2"1 -1, 1+2021—1), 1+3(2"1—1), ...,

e End at plain insertion sort (2" = 1 apart), but with most inversions
gone.

e Sort is O(N'?) (take CS170 for why!).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 2

Example of Shell's Sort

15/14|13|12|11|10|/9 |8 |7 |6 |5|4|3|2|1|0

0(1(2/3|4|5|6|7|8|9(10(11|12|13|14|15

I: Inversions left.
C: Comparisons needed to sort subsequences.

Last modified: Thu Oct 28 16:21:30 2004

#I #HC

120 1

91 10

42 20

CS61B: Lecture #25 3

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.
e Really bad idea on a simple list or vector.
e But we've already seen it in action: use heap.
e Gives O(N lg N) algorithm (/N remove-first operations).

e Since we remove items from end of heap, we can use that area to
accumulate result:

original: {1910 |-1|7 (23| 2 |42
heapified: |(42|23|19|7 | 0| 2 | -1
23| 71(19|-1/0| 2| (42
19,712 |-1/0 | 23|42
0|2 |-1| |19|23|42
2101|-1] |7 19|23|42
-1 12|71(19|23|42
-1 10]2|7(19|23|42

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 4

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge re-
sults.

e Already seen analysis: O(N lg V).
e Good for external sorting:

- First break data into small enough chunks to fit in memory and
sort.

- Then repeatedly merge into bigger and bigger sequences.

- Can merge K sequences of arbitrary size on secondary storage
using O(K) storage.

e For internal sorting, can use binomial comb to orchestrate:

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 b5

Illustration of Internal Merge Sort

L: (9,15,5,3,0,6,10,-1, 2, 20, 8)

0:0
1.0
2:0
3:0
O elements processed
1: 0 1.1 = (9, 15) 1: 1] e~ (9, 15)
2:0 2:0 2:10
3:0 3:0 3:0
1 element processed 2 elements processed 3 elements processed
0:0 0:0 0: 1] e~ (8)
1: 10 1: 1] = (0, 6) 1: 1] e (2, 20)
2:1 &4~ (3,5,9,15) 2:ff «}=~ (3,5,9,15) 2:0
3:0 3:0 3:11 e~ (-1,0,3,5,6, 9,10, 15)

4 elements processed 6 elements processed 11 elements processed

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 6

Quicksort: Speed through Probability

Idea:

e Partition data into pieces: everything > a pivot value at the high
end of the sequence to be sorted, and everything < on the low end.

e Repeat recursively on the high and low pieces.

e For speed, stop when pieces are "small enough” and do insertion sort
on the whole thing.

e Reason: insertion sort has low constant factors. By design, no item
will move out of its will move out of its piece [why?], so when pieces
are small, #inversions is, too.

e Have to choose pivot well. E.g.: median of first, last and middle
items of sequence.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 7

Example of Quicksort

e In this example, we continue until pieces are size < 4.

e Pivots for next step are starred. Arrange to move pivot to dividing

line each time.

e Last step is insertion sort.

16[10[13]18[-4[-7[12]-5[19[15] 0 [22[29]34]-1*
41-5]-7][-1][[18713]12]10[19]15] 0 [22[29]34]16*
-4]-5]-7][-1][15]13[12*[10] 0 |[16]|19*22]29[34] 18
-4]-5[-7]|-1][10] 0 |[12][15]13]|16]|18][19]|29]34 22

e Now everything is "close to" right, so just do insertion sort:

-7

-5

4

-1

0

10

12

13

15

16

18

19

22

29

34

Last modified: Thu Oct 28 16:21:30 2004

CS61B: Lecture #25 8

Performance of Quicksort

e Probabalistic time:
- If choice of pivots good, divide data in two each time: ©(NIg N)
with a good constant factor relative to merge or heap sort.
- If choice of pivots bad, most items on one side each time: O(N?).
- Q(NlgN) in best case, so insertion sort better for nearly or-
dered input sets.

e Interesting point: randomly shuffling the data before sorting makes
Q(N?) time very unlikely!

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 9

Quick Selection

The Selection Problem: for given k, find kth smallest element in data.

e Obvious method: sort, select element #k, time O(NIg N).
e If & < some constant, can easily do in ©(N) time:

- 6o through array, keep smallest % items.
e Get probably ©(N) time for all k by adapting quicksort:

- Partition around some pivot, p, as in quicksort, arrange that pivot
ends up at dividing line.

- Suppose that in the result, pivot is at index m, all elements <
pivot have indicies < m.

- If m = k, you're done: p is answer.
- If m > k, recursively select kth from left half of sequence.

-If m < k, recursively select (m — k — 1)Th from right half of
sequence.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 10

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:
51160|21(-4|37| 4 |49/10140*59| 0 |13| 2 |39]|11 46|31
0

Looking for #10 to left of pivot 40:
13131|21|-4|37|4*|11]10/39|2 | O ‘40‘59 51149146 |60
0

Looking for #6 to right of pivot 4:
4702 \ 4 \37 137111039 2131*\40\59 51]49[4660
4

Looking for #1 to right of pivot 31:
4702 \ 4 \21 13] 11 10\31\39 37\40\59 51[491]46[60
9

Just two elements; just sort and return #1:
4702 \ 4 \21 13] 11 10\31\37 39\40\59 51[491]46[60
9

Result: 39

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 11

Selection Performance

e For this algorithm, if m roughly in middle each time, cost is

1, if N =1,
CINV) = N+ C(N/2), otherwise.
= N+ N/2+...+1

= 2N — 1€ O(N)

e But in worst case, get ©(N?), as for quicksort.

e By another, non-obvious algorithm, can get ©(N) worst-case time
for all & (take €S170).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 12

Better than N Ig N?

e Can prove that if all you can do to keys is compare them then sorting
must take Q(N g N).

e Basic idea: there are N! possible ways the input data could be
scrambled.

e Therefore, your program must be prepared to do N! different com-
binations of move operations.

e Therefore, there must be N! possible combinations of outcomes of
all the if tests in your program (we're assuming that comparisons are
2-way).

e Since each if test goes two ways, number of possible different out-
comes for k if tests is 2",

e Thus, need enough tests so that 2¢ > N!, which means k € Q(Ig N!).
e Using Stirling's approximation,

m! € %(?)m@jt@(l)),

m

this tells us that
ke Q(NIgN).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 13

Beyond Comparison: Distribution Counting

e But suppose can do more than compare keys?

e For example, how can we sort a set of NV integer keys whose values
range from O to kN, for some small constant £?

e One technique: count the number of items < 1, < 2, etc.

o If M, =#items with value < p, then in sorted order, the jﬂ" item
with value p must be #M, + j.

e Gives linear-time algorithm.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 14

Distribution Counting Example

e Suppose all items are between O and 9 as in this example:

3 1 2 2 1 1 3 0 3 | Counts
1 2 3 4 5 6 7 8 9

3 6 7 9 | 11 | 12 | 13 | 16 | 16 | Running sum
0 <1 <2 <3 <4 <H <6 <7 <8 <9

71/0/4/0(9/1/9(1/9(5(3|7(3|1|6]|7(4|2|0
3
o)
o)
<
0/ 0/0|11|12[3|3[4/4/5/6|7|7|7]9]9]9
o) 3 6 9 11 12 13 16

e "Counts” line gives # occurrences of each key.

e "Running sum” gives cumulative count of keys < each value...
o ...which tells us where to put each key:

e The first instance of key k goes into slot m, where m is the number
of key instances that are < k.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 15

Radix Sort

Idea: Sort keys one character at a time.
e Can use distribution counting for each digit.

e Can work either right to left (LSD radix sort) or left to right (MSD
radix sort)

e LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

bet
s & o e
ass a cat le
(by char #2) can cat Pass 2 can set
y char be cad con set (by char #1) cad be con
ll_ll ldl lnl lTI lal lel lol
be, cad, con, can, set, cat, bat, let, bet cad, can, cat, bat, be, set, let, bet, con
X con
Pass 3 b?g gg:‘
(by char #0) bat cad let set
lbl lcl III lsl

bat, be, bet, cad, can, cat, con, let, set

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 16

MSD Radix Sort

e A bit more complicated: must keep lists from each step separate
e But, can stop processing 1-element lists

A P

% set, cat, cad, con, bat, can, be, let, bet 0]
* bat, be, bet / cat, cad, con, can / let / set 1
2

1

2

bat / x be, bet / cat, cad, con, can / let / set
bat / be / bet / x cat, cad, con, can / let / set
bat / be / bet / x cat, cad, can / con / let / set
bat / be / bet/ cad/ can/ cat / con/ let / set

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 17

Performance of Radix Sort

e Radix sort takes O(B) time where B is total size of the key data.
e Have measured other sorts as function of #records.
e How to compare?

e To have N different records, must have keys at least O(lg V) long
[why?]

e Furthermore, comparison actually takes time O(K) where K is size
of key in worst case [why?]

e So Nlg N comparisons really means N(lg N)* operations.
e While radix sort takes B = Nlg N time.

e On the other hand, must work fo get good constant factors with
radix sort.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 18

And Don't Forget Search Trees

Idea: A search tree isin sorted order, when read in inorder.

e Need balance to really use for sorting [next topic].

e Given balance, same performance as heapsort: N insertions in fime
lg N each, plus ©(N) to traverse, gives

O(N+ NlgN)=0(NIgN)

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 19

Summary

e Insertion sort: ©(Nk) comparisons and moves, where £ is maximum
amount data is displaced from final position.

- Good for small datasets or almost ordered data sets.

e Quicksort: O(N lg N) with good constant factor if data is not patho-
logical. Worst case O(N?).

e Merge sort: O(N lg N) guaranteed. Good for external sorting.
e Heapsort, treesort with guaranteed balance: ©(N lg N) guaranteed.

e Radix sort, distribution sort: ©(B) (number of bytes). Also good for
external sorting.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 20

	CS61B Lecture #25
	Shell's sort
	Example of Shell's Sort
	Sorting by Selection: Heapsort
	Merge Sorting
	Illustration of Internal Merge Sort
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance
	Better than N lg N?
	Beyond Comparison: Distribution Counting
	Distribution Counting Example
	Radix Sort
	MSD Radix Sort
	Performance of Radix Sort
	And Don't Forget Search Trees
	Summary

