
CS61B Lecture #25

Today: Sorting, cont.

• Standard methods

• Properties of standard methods

• Selection

Readings for Today: DS(IJ), Chapter 8;

Readings for Next Topic: Balanced searches, DS(IJ), Chapter 9;

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 1

Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

• First sort subsequences of elements 2k − 1 apart:

– sort items #0, 2k − 1, 2(2k − 1), 3(2k − 1), . . ., then

– sort items #1, 1 + 2k − 1, 1 + 2(2k − 1), 1 + 3(2k − 1), . . ., then

– sort items #2, 2 + 2k − 1, 2 + 2(2k − 1), 2 + 3(2k − 1), . . ., then

– etc.

– sort items #2k − 2, 2(2k − 1) − 1, 3(2k − 1) − 1, . . .,

– Each time an item moves, can reduce #inversions by as much as
2k + 1.

• Now sort subsequences of elements 2k−1 − 1 apart:

– sort items #0, 2k−1 − 1, 2(2k−1 − 1), 3(2k−1 − 1), . . ., then

– sort items #1, 1 + 2k−1 − 1, 1 + 2(2k−1 − 1), 1 + 3(2k−1 − 1), . . .,

– ...

• End at plain insertion sort (20 = 1 apart), but with most inversions
gone.

• Sort is Θ(N 1.5) (take CS170 for why!).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 2

Example of Shell’s Sort

#I #C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 120 1

0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 91 10

0 7 6 5 4 3 2 1 14 13 12 11 10 9 8 15 42 20

0 1 3 2 4 6 5 7 8 10 9 11 13 12 14 15 4 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 -

I: Inversions left.
C: Comparisons needed to sort subsequences.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 3

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

• Really bad idea on a simple list or vector.

• But we’ve already seen it in action: use heap.

• Gives O(N lg N) algorithm (N remove-first operations).

• Since we remove items from end of heap, we can use that area to
accumulate result:

19 0 -1 7 23 2 42original:

42 23 19 7 0 2 -1heapified:

23 7 19 -1 0 2 42

19 7 2 -1 0 23 42

7 0 2 -1 19 23 42

2 0 -1 7 19 23 42

0 -1 2 7 19 23 42

-1 0 2 7 19 23 42

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 4



Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge re-
sults.

• Already seen analysis: Θ(N lg N).

• Good for external sorting:

– First break data into small enough chunks to fit in memory and
sort.

– Then repeatedly merge into bigger and bigger sequences.

– Can merge K sequences of arbitrary size on secondary storage
using Θ(K) storage.

• For internal sorting, can use binomial comb to orchestrate:

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 5

Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
02:
03:

0 elements processed

1 •0: (9)
01:
02:
03:

1 element processed

00:
1 •1: (9, 15)
02:
03:

2 elements processed

1 •0: (5)
1 •1: (9, 15)
02:
03:

3 elements processed

00:
01:
1 •2: (3, 5, 9, 15)
03:

4 elements processed

00:
1 •1: (0, 6)
1 •2: (3, 5, 9, 15)
03:

6 elements processed

1 •0: (8)
1 •1: (2, 20)
02:
1 •3: (-1, 0, 3, 5, 6, 9, 10, 15)

11 elements processed

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 6

Quicksort: Speed through Probability

Idea:

• Partition data into pieces: everything > a pivot value at the high
end of the sequence to be sorted, and everything ≤ on the low end.

• Repeat recursively on the high and low pieces.

• For speed, stop when pieces are “small enough” and do insertion sort
on the whole thing.

• Reason: insertion sort has low constant factors. By design, no item
will move out of its will move out of its piece [why?], so when pieces
are small, #inversions is, too.

• Have to choose pivot well. E.g.: median of first, last and middle
items of sequence.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 7

Example of Quicksort

• In this example, we continue until pieces are size ≤ 4.

• Pivots for next step are starred. Arrange to move pivot to dividing
line each time.

• Last step is insertion sort.

16 10 13 18 -4 -7 12 -5 19 15 0 22 29 34 -1*

-4 -5 -7 -1 18 13 12 10 19 15 0 22 29 34 16*

-4 -5 -7 -1 15 13 12* 10 0 16 19* 22 29 34 18

-4 -5 -7 -1 10 0 12 15 13 16 18 19 29 34 22

• Now everything is “close to” right, so just do insertion sort:

-7 -5 -4 -1 0 10 12 13 15 16 18 19 22 29 34

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 8



Performance of Quicksort

• Probabalistic time:

– If choice of pivots good, divide data in two each time: Θ(N lg N)
with a good constant factor relative to merge or heap sort.

– If choice of pivots bad, most items on one side each time: Θ(N 2).

– Ω(N lg N) in best case, so insertion sort better for nearly or-
dered input sets.

• Interesting point: randomly shuffling the data before sorting makes
Ω(N 2) time very unlikely!

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 9

Quick Selection

The Selection Problem: for given k, find kth smallest element in data.

• Obvious method: sort, select element #k, time Θ(N lg N).

• If k ≤ some constant, can easily do in Θ(N) time:

– Go through array, keep smallest k items.

• Get probably Θ(N) time for all k by adapting quicksort:

– Partition around some pivot, p, as in quicksort, arrange that pivot
ends up at dividing line.

– Suppose that in the result, pivot is at index m, all elements ≤
pivot have indicies ≤ m.

– If m = k, you’re done: p is answer.

– If m > k, recursively select kth from left half of sequence.

– If m < k, recursively select (m − k − 1)th from right half of
sequence.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 10

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:
51 60 21 -4 37 4 49 10 40* 59 0 13 2 39 11 46 31
0

Looking for #10 to left of pivot 40:
13 31 21 -4 37 4* 11 10 39 2 0 40 59 51 49 46 60
0

Looking for #6 to right of pivot 4:
-4 0 2 4 37 13 11 10 39 21 31* 40 59 51 49 46 60

4

Looking for #1 to right of pivot 31:
-4 0 2 4 21 13 11 10 31 39 37 40 59 51 49 46 60

9

Just two elements; just sort and return #1:
-4 0 2 4 21 13 11 10 31 37 39 40 59 51 49 46 60

9

Result: 39

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 11

Selection Performance

• For this algorithm, if m roughly in middle each time, cost is

C(N) =















1, if N = 1,
N + C(N/2), otherwise.

= N + N/2 + . . . + 1

= 2N − 1 ∈ Θ(N)

• But in worst case, get Θ(N 2), as for quicksort.

• By another, non-obvious algorithm, can get Θ(N) worst-case time
for all k (take CS170).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 12



Better than N lg N?

• Can prove that if all you can do to keys is compare them then sorting
must take Ω(N lg N).

• Basic idea: there are N ! possible ways the input data could be
scrambled.

• Therefore, your program must be prepared to do N ! different com-
binations of move operations.

• Therefore, there must be N ! possible combinations of outcomes of
all the if tests in your program (we’re assuming that comparisons are
2-way).

• Since each if test goes two ways, number of possible different out-
comes for k if tests is 2k.

• Thus, need enough tests so that 2k > N !, which means k ∈ Ω(lg N !).

• Using Stirling’s approximation,

m! ∈
√

2πm




m

e





m




1 + Θ






1

m











 ,

this tells us that
k ∈ Ω(N lg N).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 13

Beyond Comparison: Distribution Counting

• But suppose can do more than compare keys?

• For example, how can we sort a set of N integer keys whose values
range from 0 to kN , for some small constant k?

• One technique: count the number of items < 1, < 2, etc.

• If Mp =#items with value < p, then in sorted order, the jth item
with value p must be #Mp + j.

• Gives linear-time algorithm.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 14

Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0
< 0

3
< 1

6
< 2

7
< 3

9
< 4

11
< 5

12
< 6

13
< 7

16
< 8

16
< 9

Running sum

0
0

0 0 1
3

1 1 2
6

3 3 4
9

4 5
11

6
12

7
13

7 7 9
16

9 9

• “Counts” line gives # occurrences of each key.

• “Running sum” gives cumulative count of keys ≤ each value. . .

• . . . which tells us where to put each key:

• The first instance of key k goes into slot m, where m is the number
of key instances that are < k.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 15

Radix Sort

Idea: Sort keys one character at a time.

• Can use distribution counting for each digit.

• Can work either right to left (LSD radix sort) or left to right (MSD
radix sort)

• LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

be

‘t’

cad

‘d’

can
con

‘n’

bet
let
bat
cat
set

‘t’

Pass 1
(by char #2)

be, cad, con, can, set, cat, bat, let, bet

bat
cat
can
cad

‘a’

bet
let
set
be

‘e’

con

‘o’

Pass 2
(by char #1)

cad, can, cat, bat, be, set, let, bet, con

bet
be
bat

‘b’

con
cat
can
cad

‘c’

let

‘l’

set

‘s’

Pass 3
(by char #0)

bat, be, bet, cad, can, cat, con, let, set

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 16



MSD Radix Sort

• A bit more complicated: must keep lists from each step separate

• But, can stop processing 1-element lists

A posn

? set, cat, cad, con, bat, can, be, let, bet 0
? bat, be, bet / cat, cad, con, can / let / set 1
bat / ? be, bet / cat, cad, con, can / let / set 2
bat / be / bet / ? cat, cad, con, can / let / set 1
bat / be / bet / ? cat, cad, can / con / let / set 2
bat / be / bet / cad / can / cat / con / let / set

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 17

Performance of Radix Sort

• Radix sort takes Θ(B) time where B is total size of the key data .

• Have measured other sorts as function of #records.

• How to compare?

• To have N different records, must have keys at least Θ(lg N) long
[why?]

• Furthermore, comparison actually takes time Θ(K) where K is size
of key in worst case [why?]

• So N lg N comparisons really means N(lg N)2 operations.

• While radix sort takes B = N lg N time.

• On the other hand, must work to get good constant factors with
radix sort.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 18

And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

• Need balance to really use for sorting [next topic].

• Given balance, same performance as heapsort: N insertions in time
lg N each, plus Θ(N) to traverse, gives

Θ(N + N lg N) = Θ(N lg N)

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 19

Summary

• Insertion sort: Θ(Nk) comparisons and moves, where k is maximum
amount data is displaced from final position.

– Good for small datasets or almost ordered data sets.

• Quicksort: Θ(N lg N) with good constant factor if data is not patho-
logical. Worst case O(N 2).

• Merge sort: Θ(N lg N) guaranteed. Good for external sorting.

• Heapsort, treesort with guaranteed balance: Θ(N lg N) guaranteed.

• Radix sort, distribution sort: Θ(B) (number of bytes). Also good for
external sorting.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 20


	CS61B Lecture #25
	Shell's sort
	Example of Shell's Sort
	Sorting by Selection: Heapsort
	Merge Sorting
	Illustration of Internal Merge Sort
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance
	Better than N lg N?
	Beyond Comparison: Distribution Counting
	Distribution Counting Example
	Radix Sort
	MSD Radix Sort
	Performance of Radix Sort
	And Don't Forget Search Trees
	Summary

