CS61B Lecture #25

Today: Sorting, cont.
e Standard methods
e Properties of standard methods

e Selection
Readings for Today: DS(1J), Chapter 8;

Readings for Next Topic: Balanced searches,

Last modified: Thu Oct 28 16:21:30 2004

DS(IJ), Chapter 9;

CS61B: Lecture #25 1

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

e First sort subsequences of elements 2" — 1 apart:
- sort items #0, 28 — 1, 2(2" — 1), 3(2* - 1), ..., then
-sortitems #1, 1+2F -1, 1+2(28 - 1), 1+3(2"-1), ..., then
-sortitems #2, 2+2F — 1, 2+2(2" - 1), 2+3(2* - 1), ..., then
- efc.
- sort items #2F —2 2028 — 1) — 1, 3(2F —1) -1, ...,
- Each time an item moves, can reduce #inversions by as much as

2k 41,

e Now sort subsequences of elements 2"~! — 1 apart:
- sort items #0, 2"=1 — 1, 2(2"1 — 1), 3(2"1 —1), ..., then
-sortitems #1, 1+ 281 — 1, 142021 —1), 14321 —1), ...

e End at plain insertion sort (2° = 1 apart), but with most inversions
gone.

e Sort is O(N'?) (take €S170 for why!).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 2

Example of Shell's Sort

[15]14[13[12]11[10[9[8[7]6][5[4[3]2]1]0]

[0]14]13]12]11[10[9[8[7]6][5[4[3]2]1]15]

[0]7]6]5]4]3]2]1]14[13[12[11]10[9 [8]15]

[0]1]3]2]4]6]5]7[8]10]9]11[13]12]14]15]

[0]1]2]3]4][5]6]7[8]9]t0]11[12]13]14]15]
I: Inversions left.
C: Comparisons needed to sort subsequences.

Last modified: Thu Oct 28 16:21:30 2004

CS61B: Lecture #25 3

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.
e Really bad idea on a simple list or vector.
e But we've already seen it in action: use heap.
e Gives O(N lg N) algorithm (/N remove-first operations).

e Since we remove items from end of heap, we can use that area to
accumulate result:

original: [19]1 0 [-1]7 [23] 2 [42]
heapified: [42]23][19]7 [0 [2 [-1]
(23] 7]19]-1[0]2] [42]
[19[7]2]-1]0] [23]42]
‘7‘0‘2‘—1‘ ‘19‘23‘42‘
[2]0]-1] [7]19]23]42]
‘O‘—l‘ ‘2‘7‘19‘23‘42‘

[0[2]7]19]23]42]

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 4

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge re-
sults.

e Already seen analysis: ©(N Ig N).
e Good for external sorting:

- First break data into small enough chunks to fit in memory and
sort.

- Then repeatedly merge into bigger and bigger sequences.

- Can merge K sequences of arbitrary size on secondary storage
using O(K) storage.

e For internal sorting, can use binomial comb to orchestrate:

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 5

Illustration of Internal Merge Sort

L:(9,15,5,3,0,6,10,-1, 2, 20, 8)

0 elements processed

o] 0:[I] o~ (5)
fﬂﬂ» (9, 15) : -~ (9, 15)

Let-©)

10
10

1 element processed 2 elements processed 3 elements processed

110 H H *—— (8)
.10 : = (0, 6) 1 = (2, 20)

:ﬂil—»(3.5,9,15) : L~ (3,5,9,15) :
10 : [e4~ (-1,0,3,5,6,9,10,15)

4 elements processed elements processed 11 elements processed

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 6

Quicksort: Speed through Probability

Idea:

e Partition data into pieces: everything > a pivot value at the high
end of the sequence to be sorted, and everything < on the low end.

e Repeat recursively on the high and low pieces.

e For speed, stop when pieces are "small enough” and do insertion sort
on the whole thing.

e Reason: insertion sort has low constant factors. By design, no item
will move out of its will move out of its piece [why?], so when pieces
are small, #inversions is, too.

e Have to choose pivot well. E.g.. median of first, last and middle
items of sequence.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 7

Example of Quicksort

e In this example, we continue until pieces are size < 4.

e Pivots for next step are starred. Arrange to move pivot to dividing
line each time.

o Last step is insertion sort.

[16]10[13[18]-4[-7[12][-5[19]15] 0 [22[29]34]-1*]
[-4]-5[-7]|[-1][18]13]12[10[19[15] 0 [22]29]34]16%]
[-4]-5[-7]|[-1][15]13]12*[10] 0 | [16][19*][22]29[34] 18]
[-4]-5[-7][-1][10] 0 |[12][15]13][16][18][19][29]34] 22]

e Now everything is "close to" right, so just do insertion sort:

[7]5]-4[-1]0 [10]12[13] 15|16 18] 19]22]29]34]

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 8

Performance of Quicksort

e Probabalistic time:
- If choice of pivots good, divide data in two each time: ©(Nlg N)
with a good constant factor relative to merge or heap sort.
- If choice of pivots bad, most items on one side each time: O(N?).
-Q(NIgN) in best case, so insertion sort better for nearly or-
dered input sets.

e Interesting point: randomly shuffling the data before sorting makes
Q(N?) time very unlikely!

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 9

Quick Selection

The Selection Problem: for given k, find kth smallest element in data.

e Obvious method: sort, select element #k, time O(N g N).
e If i < some constant, can easily do in ©O(N) time:

- Go through array, keep smallest & items.
e Get probably ©(N) time for all k by adapting quicksort:

- Partition around some pivot, p, as in quicksort, arrange that pivot
ends up at dividing line.

- Suppose that in the result, pivot is at index m, all elements <
pivot have indicies < m.

- If m =k, you're done: p is answer.
- If m > k, recursively select 1T from left half of sequence.

-If m < k, recursively select (m — k — 1)1'h from right half of
sequence.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 10

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:
[51]60]21[-4[37] 4 [49]10/40%59] 0 [13] 2 [39] 11 [46]31]
0

Looking for #10 to left of pivot 40:
[13]31]21[-4[37[4*[11]10[39] 2 | 0 |[40]|[59]51[49]4660]
0

Looking for #6 to right of pivot 4:
[-4]0[2] 4][37]13]11]10[39]21[31*][40] [59]51[49]46]60]
4

Looking for #1 to right of pivot 31:

[-4] 02| 4][21][13]11]10]|[31][39]37]40]|[59]51[49]4660]
9

Just two elements; just sort and return #1:

[-4] 02 4][21[13]11]10]| 31][37]39][40]|[59]51[49]4660]
9

Result: 39

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 11

Selection Performance

e For this algorithm, if m roughly in middle each time, cost is

1, if N =1,
CN) = N + C(N/2), otherwise.
= N+N/2+...+1

= 2N - 1€ O(N)

e But in worst case, get ©(N?), as for quicksort.

e By another, non-obvious algorithm, can get ©(N) worst-case time
for all k (take €S170).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 12

Better than N Ig N?

e Can prove that if all you can do to keys is compare them then sorting
must take Q(Nlg N).

e Basic idea: there are N! possible ways the input data could be
scrambled.

e Therefore, your program must be prepared to do N! different com-
binations of move operations.

e Therefore, there must be N! possible combinations of outcomes of
all the if tests in your program (we're assuming that comparisons are
2-way).

e Since each if test goes two ways, number of possible different out-
comes for k if tests is 2*.

e Thus, need enough tests so that 2¥ > N!, which means k € Q(lg N!).

e Using Stirling's approximation,

m! € vV2rm (T)m (1 +0O (i)) ,
e m
this tells us that
ke Q(NlgN).

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 13

Beyond Comparison: Distribution Counting

e But suppose can do more than compare keys?

e For example, how can we sort a set of IV integer keys whose values
range from O to kN, for some small constant £?

e One technique: count the number of items < 1, < 2, etc.

o If M, =#items with value < p, then in sorted order, the jTh item
with value p must be #M, + j.

e Gives linear-time algorithm.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 14

Distribution Counting Example

e Suppose all items are between O and 9 as in this example:

| 7]o]4]0f9f1]o]1][9]5]3]7[3][1]6]7[4][2]0]

3

0

0
<
0
0

[0Jofof1]1]1]2]3[3[4[4[5][6[7[7]7]9]9]9]
6 9 11 12 13 16

1 [2]2]1]1]3]0] 3]counts

2 3 4 5 6 7 8 9
|6 [7]9] 1]12]13]16] 16 | Runningsum
<2 <3 <4 <5 <6 <7 <8 <9

0 <1

3
1
3

e "Counts" line gives # occurrences of each key.
e "Running sum" gives cumulative count of keys < each value...
e ... which tells us where to put each key:

e The first instance of key k goes into slot m, where m is the number
of key instances that are < k.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 15

Radix Sort

Idea: Sort keys one character at a time.
e Can use distribution counting for each digit.
e Can work either right to left (LSD radix sort) or left to right (MSD
radix sort)
¢ LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

bet
let bat bet

Pass 1 bat cat let
can cat Pass 2 can set

(by char #2) pe cad con set (by char #1) cad be con
Iu' 'd' 'n' 'T' 'G' 'e' 'o'

be, cad, con, can, set, cat, bat, let, bet cad, can, cat, bat, be, set, let, bet, con

bet car
et ca
Pass 3 be can
(by char #0) bat cad let set
b e e
bat, be, bet, cad, can, cat, con, let, set

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 16

MSD Radix Sort

e A bit more complicated: must keep lists from each step separate

e But, can stop processing 1-element lists

A
* set, cat, cad, con, bat, can, be, let, bet
* bat, be, bet / cat, cad, con, can / let / set
bat / « be, bet / cat, cad, con, can / let / set
bat / be / bet / x cat, cad, con, can / let / set
bat / be / bet / x cat, cad, can / con / let / set
bat / be / bet / cad / can / cat / con / let / set

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 17

Performance of Radix Sort

e Radix sort takes O(B) time where B is total size of the key data.
e Have measured other sorts as function of #records.
e How to compare?

e To have N different records, must have keys at least ©(Ig V) long
[why?]

e Furthermore, comparison actually takes time ©(K) where K is size
of key in worst case [why?]

e So Nlg N comparisons really means N(lg NV)* operations.
e While radix sort takes B = Nlg N time.

e On the other hand, must work to get good constant factors with
radix sort.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 18

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.
e Need balance to really use for sorting [next topic].

e Given balance, same performance as heapsort: N insertions in time
lg N each, plus ©(N) to traverse, gives

O(N + NlgN) = O(NIgN)

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 19

Summary

e Insertion sort: ©(Nk) comparisons and moves, where k is maximum
amount data is displaced from final position.

- Good for small datasets or almost ordered data sets.

e Quicksort: ©(N lg N) with good constant factor if data is not patho-
logical. Worst case O(N?).

e Merge sort: O(N lg N) guaranteed. Good for external sorting.
e Heapsort, freesort with guaranteed balance: ©(N g N) guaranteed.

e Radix sort, distribution sort: O(B) (number of bytes). Also good for
external sorting.

Last modified: Thu Oct 28 16:21:30 2004 CS61B: Lecture #25 20

	CS61B Lecture #25
	Shell's sort
	Example of Shell's Sort
	Sorting by Selection: Heapsort
	Merge Sorting
	Illustration of Internal Merge Sort
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance
	Better than N lg N?
	Beyond Comparison: Distribution Counting
	Distribution Counting Example
	Radix Sort
	MSD Radix Sort
	Performance of Radix Sort
	And Don't Forget Search Trees
	Summary

