
CS61B Lecture #24

Today:

• Sorting algorithms: why?

• Insertion sort

Readings for Today:
DS(IJ), Chapter 8;

Last modified: Wed Oct 27 12:06:51 2004 CS61B: Lecture #24 1



Purposes of Sorting

• Sorting supports searching

• Binary search standard example

• Also supports other kinds of search:

– Are there two equal items in this set?

– Are there two items in this set that both have the same value for
property X?

– What are my nearest neighbors?

• Used in numerous unexpected algorithms, such as convex hull (small-
est convex polygon enclosing set of points).

Last modified: Wed Oct 27 12:06:51 2004 CS61B: Lecture #24 2



Some Definitions

• A sort is a permutation (re-arrangement) of a sequence of elements
that brings them into order, according to some total order. A total
order, �, is:

– Total: x � y or y � x for all x, y.

– Reflexive: x � x;

– Antisymmetric: x � y and y � x iff x = y.

– Transitive: x � y and y � z implies x � z.

• However, our orderings may allow unequal items to be equivalent:

– E.g., can be two dictionary definitions for the same word: if en-
tries sorted only by word, then sorting could put either entry
first.

– A sort that does not change the relative order of equivalent en-
tries is called stable.

Last modified: Wed Oct 27 12:06:51 2004 CS61B: Lecture #24 3



Classifications

• Internal sorts keep all data in primary memory

• External sorts process large amounts of data in batches, keeping
what won’t fit in secondary storage (in the old days, tapes).

• Comparison-based sorting assumes only thing we know about keys is
order

• Radix sorting uses more information about key structure.

• Insertion sorting works by repeatedly inserting items at their ap-
propriate positions in the sorted sequence being constructed.

• Selection sorting works by repeatedly selecting the next larger
(smaller) item in order and adding it one end of the sorted sequence
being constructed.

Last modified: Wed Oct 27 12:06:51 2004 CS61B: Lecture #24 4



Sorting by Insertion

• Simple idea:

– starting with empty sequence of outputs.

– add each item from input, inserting into output sequence at right
point.

• Very simple, good for small sets of data.

• With vector or linked list, time for find + insert of one item is at
worst Θ(k), where k is # of outputs so far.

• So gives us O(N 2) algorithm. Can we say more?

Last modified: Wed Oct 27 12:06:51 2004 CS61B: Lecture #24 5



Inversions

• Can run in Θ(N) comparisons if already sorted.

• Consider a typical implementation for arrays:

for (int i = 1; i < A.length; i += 1) {

int j;

Object x = A[i];

for (j = i-1; j >= 0; j -= 1) {

if (A[j].compareTo (x) <= 0) /* (1) */

break;

A[j+1] = A[j];

}

A[j+1] = x;

}

• #times (1) executes ≈ how far x must move.

• If all items within K of proper places, then takes O(KN) operations.

• Thus good for any amount of nearly sorted data.

• One measure of unsortedness: # of inversions: pairs that are out
of order (= 0 when sorted, N(N − 1)/2 when reversed).

• Each step of j decreases inversions by 1.

Last modified: Wed Oct 27 12:06:51 2004 CS61B: Lecture #24 6


	CS61B Lecture #24
	Purposes of Sorting
	Some Definitions
	Classifications
	Sorting by Insertion
	Inversions

