CS61B Lecture #23

Today:
¢ Range queries
e Java utilities: SortedSet, Map, etc.

e Hashing: probabilistic constant-time search.
Readings for Today: DS(IJ), Chapters 6 and 7

Readings for Next Topic: DS(IJ), Chapter 8 (Sorting)

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 1

Ranges

e So far, have looked for specific items

e But for BSTs, need an ordering anyway, and can also support looking
for ranges of values.

e Example: perform some action on all values in a BST that are within
some range (in natural order):

/*x Apply WHATTODO to all labels in T that are
* >= L and < U, in ascending natural order. */
static void visitRange (BST T, Comparable<Key> L, Comparable<Key> U,
Action whatToDo)
if (T != null) {
int compLeft = L.compareTo (T.label ()),
compRight = U.compareTo (T.label ());
if (compLeft < 0) /*L < label*/
visitRange (T.left (O, L, U, whatToDo);
if (compLeft <= 0 && compRight > 0) /* L <= label <U*/
whatToDo.action (T);
if (compRight > 0) /* label <U*/
visitRange (T.right (), L, U, whatToDo);
}
}

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 2

Time for Range Queries

e Time for range query € O(h+ M), where h is height of tree, and M
is number of data items that turn out to be in the range.

e Consider searching the tree below for all values, z, such that 25 <
x < 40.

e In this example, the h comes from the starred nodes; the M comes
from other non-dashed nodes. Dashed nodes are never looked at.

/ \
I 71 \
\]

{90
(\\7/

‘457 {557 {80 {100

{50 ;
N

\
'
h

Ordered Sets and Range Queries in Java

e Class SortedSet supports range queries with views of set:
- S.headSet (U): subset of S that is < U.
- S.tailSet(L): subset that is > L.
- S.subSet (L,U): subset that is > L, < U.
e Changes to views modify S.
e Attempts to, e.g., add o a headSet beyond U are disallowed.
e Can iterate through a view to process a range:

SortedSet<String> fauna = new TreeSet<String>

(Arrays.asList ("axolotl", "elk", "dog", "hartebeest", "duck"));

for (String item : fauna.subSet ("bison", "gnu"))
System.out.printf ("¥s, ", item);

would print "dog, duck, elk,"”

e Java library type TreeSet<T> requires either that T be Comparable,
or that you provide a Comparator:

SortedSet<String> rev_fauna = new TreeSet<String> (Collections.reverseOrder());

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 3 Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 4

Example of Representation: BSTSet

e Use binary search tree to represent set. Can use same representa-
tion for both BSTSet and its subsets.

e Each set has pointer to BST, plus bounds (if any).

e In this representation, size is rather expensive!

SortedSet<String>
fauna = new BSTSet<String> (collection of stuff);
subset = fauna.subSet ("bison","gnu");

i - - sentinel fauna:
Iterator<String> i = subset.iterator ();

I: 5 ~

BSTSeT,This: artebees
ast:
next:

(axolotl)

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 5

Back to Simple Search: Hashing

e Linear search is OK for small data sets, bad for large.

e So linear search would be OK if we could rapidly narrow the search
to a few items.

e Suppose that in constant time could put any item in our data set into
a numbered bucket, where # buckets stays within a constant factor
of # keys.

e Suppose also that buckets contain roughly equal numbers of keys.

e Then search would be constant time.

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 6

Hash functions

e To do this, must have way to convert key to bucket number: a hash
function.
e Example:
- N =200 data items.
- keys are longs, evenly spread over the range 0..25 — 1,
- Want to keep maximum search fo L = 2 items.

- Use hash function h(K) = K%M, where M = N/L =100 is the
number of buckets: 0 < h(K) < M.

- So 100232, 433, and 10002332482 go into different buckets,
but 10, 400210, and 210 all go into the same bucket.

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 7

External chaining

e Array of M buckets.
e Each bucket is a list of data items.

43001 4-+{100] 4-1500"
Eﬂ 201] 4 1 [\

E

¢ Not all buckets have same length, but average is N/M = L, the load
factor.

e To work well, hash function must avoid collisions: keys that “hash”
to equal values.

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 8

Open Addressing

e Idea: Put one data item in each bucket.
e When there is a collision, and bucket is full, just use another.
¢ Various ways to do this:

- Linear probes: If thereisa collisionat h(K), try h(K)+m, h(K)+
2m, etc. (wrap around at end).
- Quadratic probes: h(K) +m, h(K) +m?, ...
- Double hashing: h(K) + h'(K), h(K) + 2/ (K), etc.
e Example: h(K) = K%M, with M = 10, linear probes with m = 1.
-Add1, 2,611, 3,102, 9, 18, 108, 309 to empty table.

108] 1 [2 [11]3]102[309] [18] 9]

e Things can get slow, even when table is far from full.
e Lots of literature on this technique, but

e Personally, I just settle for external chaining.

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 9

Filling the Table

e To get (likely to be) constant-time lookup, need to keep #buckets
within constant factor of #items.

e So resize table when load factor gets higher than some limit.
¢ In general, must re-hash all table items.
e Still, this operation constant time per item,

e So by doubling table size each time, get constant amortized time
for insertion and lookup

e (Assuming, that is, that our hash function is good).

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 10

Hash Functions: Strings

e For String, "sgsi---s,—1" want function that takes all characters
and their positions into account.

e What's wrong with sq + s1 + ... + $,-1?
e For strings, Java uses
h(s)=s0-31"" 45, -31" 24 ... +5,1
computed modulo 2% as in Java int arithmetic.

e To convert to a table index in 0..N — 1, compute h(s)%N (but don’t
use table size that is multiple of 31!)

¢ Not as hard to compute as you might think; don't even need multipli-
cationl
int r; r = 0;
for (int i = 0; i < s.length (); i += 1)
r = (r << 5) - r + s.charAt (i);

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 11

Hash Functions: Other Data Structures I

e Lists (ArrayList, LinkedList, etc.) are analagous fo strings: e.g.,
Java uses

hashCode = 1; Iterator i = list.iterator();
while (i.hasNext()) {
Object obj = i.next();
hashCode =
31xhashCode
+ (obj==null ? 0 : obj.hashCode());
}

e Can limit time spent computing hash function by not looking at entire
list. For example: look only at first few items (if dealing with aList
or SortedSet).

e Causes more collisions, but does not cause equal things to go to dif-
ferent buckets.

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 12

Hash Functions: Other Data Structures II

e Recursively defined data structures = recursively defined hash
functions.
e For example, on a binary tree, one can use something like
hash(T):
if (T == null)
return O;
else return someHashFunction (T.label ())

+ 255 * hash(T.left ())
+ 255%255 * hash(T.right ());

e Can use address of object (“*hash on identity”) if distinct (!=) ob-
jects are never considered equal.

e But carefull Won't work for Strings, because .equal Strings could
be in different buckets:

String H = "Hello",
S1=H+ ", world!",
52 = "Hello, world!";

e Here S1.equals(82), but 81 !'= 82,

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 13

What Java Provides

e In class Object, is function hashCode ().
e By default, returns address of this, or something similar.
e Can override it for your particular type.

e For reasons given on last slide, is overridden for type String, as well
as many types in the Java library, like all kinds of List.

e The types Hashtable, HashSet, and HashMap use hashCode to give
you fast look-up of objects.

HashMap<KeyType,ValueType> map =
new HashMap<KeyType,ValueType> (approximate size, load fac-

tor) ;

map.put (key, value); // Map KEY -> VALUE.
// VALUE last mapped to by SOMEKEY.
. map.get (someKey)
// VALUE last mapped to by SOMEKEY.
. map.containsKey (someKey)
// Is SOMEKEY mapped?
. map.keySet () // All keys in MAP (a Set)

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 14

Characteristics

e Assuming good hash function, add, lookup, deletion take O(1) time,
amortized.

e Good for cases where one looks up equal keys.

e Usually bad for range queries: “Give me every name between Martin
and Napoli." [Why?]

e But sometimes OK, if hash function is monotonic (i.e., when key &, >
ks, then h(ky) > h(ks). For example,

- I'tems are time-stamped records; key is the time.
- Hashing function is to have one bucket for every hour.

e Hashing is probably not a good idea for small sets that you rapidly
create and discard [why?]

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 15

Comparing Search Structures

Here, N is #items, k is #answers fo query.

Bushy “Good"
Unordered Sorted Search Hash
Function List Array Tree Table Heap
find O(N) O(lg N) O(lg N) 0(1) ©O(N)
add (1) O(N) O(lgN) O(1) ©O(gN)
range query O(N) Ok+I1gN) ©(k+1gN) O(N) O(N)
find largest O(N) o(1) O(lgN) O(N) o)
remove largest| O(N) o(1) O(gN) O(N) ©(gN)

Last modified: Wed Oct 27 14:38:08 2004 CS61B: Lecture #23 16

	CS61B Lecture #23
	Ranges
	Time for Range Queries
	Ordered Sets and Range Queries in Java
	Example of Representation: BSTSet
	Back to Simple Search: Hashing
	Hash functions
	External chaining
	Open Addressing
	Filling the Table
	Hash Functions: Strings
	Hash Functions: Other Data Structures I
	Hash Functions: Other Data Structures II
	What Java Provides
	Characteristics
	Comparing Search Structures

