
CS61B Lecture #22

Administrative:

• Midterm graded:

– Intended average: 20

– Actual average: 23

– Actual median: 22

• Midterms available at lecture today; after that, they’ll be in 385
Soda.

Today: Project #1 retrospective, priority queues.

Last modified: Fri Oct 22 12:14:02 2004 CS61B: Lecture #22 1



Priority Queues, Heaps

• Priority queue: defined by operations “add,” “find largest,” “remove
largest.”

• Examples: scheduling long streams of actions to occur at various
future times.

• Also useful for sorting (keep removing largest).

• Heap is common implementation.

• Enforces heap property: all labels in both children of node are less
(or greater) than node’s label.

• So node at top has largest (or smallest) label.

• Are free to add smaller value to less bushy subtree, thus maintaining
bushiness (keeping tree balanced).

• Insertion and deletion always proportional to lg N in worst case.

Last modified: Fri Oct 22 12:14:02 2004 CS61B: Lecture #22 2



Example: Inserting into a simple heap

Data:

1 17 4 5 9 0 -1 20

Initial Heap:
20

17

5

1

4

9

0 -1

Add 8: Dashed boxes show where heap property violated

20

17

5

1 8

4

9

0 -1

20

17

8

1 5

4

9

0 -1

re-heapify up
=⇒

Last modified: Fri Oct 22 12:14:02 2004 CS61B: Lecture #22 3



Heap insertion continued

Now insert 18:

20

17

8

1 5

4

18

9

0 -1

20

17

8

1 5

18

4

9

0 -1

=⇒

20

18

8

1 5

17

4

9

0 -1

⇓

Last modified: Fri Oct 22 12:14:02 2004 CS61B: Lecture #22 4



Removing Largest from Heap

To remove largest: Move bottommost, rightmost node to top, then
re-heapify down as needed (swap offending node with larger child) to
re-establish heap property.

4

18

8

1 5

17

9

0 -1

18

4

8

1 5

17

9

0 -1
=⇒

18

17

8

1 5

4

9

0 -1

⇓

Last modified: Fri Oct 22 12:14:02 2004 CS61B: Lecture #22 5



Heaps in Arrays

• Since heaps are complete (missing items only at bottom level), can
use arrays for compact representation.

• Example of removal from last slide (dashed arrows show children):

20

18

8

1 5

17

4

9

0 -1

=⇒

Nodes stored in level order.

Children of node at index #K

are in 2K and 2K + 1

20 18 9 8 17 0 -1 1 5 4

⇓

4 18 9 8 17 0 -1 1 5

⇓

18 4 9 8 17 0 -1 1 5

⇓

18 17 9 8 4 0 -1 1 5

1 2 3 4 5 6 7 8 9 10

Last modified: Fri Oct 22 12:14:02 2004 CS61B: Lecture #22 6


	CS61B Lecture #22
	Priority Queues, Heaps
	Example: Inserting into a simple heap
	Heap insertion continued
	Removing Largest from Heap
	Heaps in Arrays

